lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9359
  • Accuracy: 0.7135

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.86 1.0 529 1.6920 0.6057
1.8271 2.0 1058 1.6426 0.6119
1.7324 3.0 1587 1.5998 0.6163
1.6818 4.0 2116 1.5580 0.6220
1.5864 5.0 2645 1.5211 0.6278
1.5204 6.0 3174 1.4863 0.6327
1.4481 7.0 3703 1.4517 0.6372
1.3768 8.0 4232 1.4121 0.6429
1.2946 9.0 4761 1.3739 0.6482
1.243 10.0 5290 1.3364 0.6532
1.1425 11.0 5819 1.2968 0.6594
1.0847 12.0 6348 1.2539 0.6652
1.0152 13.0 6877 1.2164 0.6706
0.9498 14.0 7406 1.1770 0.6758
0.8652 15.0 7935 1.1323 0.6821
0.8265 16.0 8464 1.0826 0.6901
0.7432 17.0 8993 1.0463 0.6960
0.7106 18.0 9522 1.0098 0.7022
0.669 19.0 10051 0.9696 0.7078
0.6043 20.0 10580 0.9359 0.7135

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3
    self-reported
    0.713