lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7173
  • Accuracy: 0.7434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.3186 1.0 529 0.6640 1.2075
1.2869 2.0 1058 0.6686 1.1716
1.2221 3.0 1587 0.6729 1.1375
1.1692 4.0 2116 0.6770 1.1135
1.1179 5.0 2645 0.6808 1.0888
1.0551 6.0 3174 0.6846 1.0604
1.0184 7.0 3703 0.6893 1.0354
0.9519 8.0 4232 0.6929 1.0097
0.8969 9.0 4761 0.6963 0.9885
0.8428 10.0 5290 0.6993 0.9753
0.7945 11.0 5819 0.7055 0.9353
0.7459 12.0 6348 0.7097 0.9101
0.6852 13.0 6877 0.7145 0.8795
0.6452 14.0 7406 0.7182 0.8614
0.602 15.0 7935 0.7230 0.8327
0.5465 16.0 8464 0.7273 0.8036
0.5233 17.0 8993 0.7305 0.7916
0.4896 18.0 9522 0.7641 0.7349
0.4549 19.0 10051 0.7421 0.7390
0.42 20.0 10580 0.7173 0.7434

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2

Finetuned
(620)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3
    self-reported
    0.743