Uploaded model

  • Developed by: u-10bei
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

実行手順

以下の手順に従うことで、Hugging Face上のモデル(llm-jp/llm-jp-3-13b + u-10bei/llm-jp-3-13b-lora-orca-ichikara2_Tengentoppa)を用いて入力データ(elyza-tasks-100-TV_0.jsonl)を推論し、その結果を{adapter_id}-outputs.jsonlというファイルに出力できます。

前提条件

Python環境があること(例: Google Colab) Hugging Faceのアクセストークン (HF_TOKEN) が取得済みであること セットアップ 必要なライブラリのインストールを行います。 以下は、Google Colabでの実行例です。

!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers

# Google Colab シークレットを使う場合、左のサイドバーより🔑マークをクリック
# 任意の名前で Value に Hugging Face Token を入れてください。
# ノートブックからのアクセスのトグルをオンにし、下記コードを実行してください。

from google.colab import userdata
HF_TOKEN = userdata.get('{シークレットキー}') #シークレットキーの名前を入力

# llm-jp/llm-jp-3-13bを4bit量子化のqLoRA設定でロード。

from unsloth import FastLanguageModel
import torch
max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model_id = "u-10bei/llm-jp-3-13b-lora-orca-ichikara2_Tengentoppa"

# FastLanguageModel インスタンスを作成

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# SFT用のモデルを用意

model = FastLanguageModel.get_peft_model(
    model,
    r = 32,
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 32,
    lora_dropout = 0.05,
    bias = "none",
    use_gradient_checkpointing = "unsloth",
    random_state = 3407,
    use_rslora = False,
    loftq_config = None,
    max_seq_length = max_seq_length,
)

# 入力データの準備
# ./elyza-tasks-100-TV_0.jsonlというファイルからデータセットをロードします。

import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

# 推論実行

from tqdm import tqdm

# 推論するためにモデルのモードを変更

FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

new_model_id = "llm-jp-3-13b-lora-orca-ichikara2_Tengentoppa"

# 出力の保存
# 最後に、new_model_idをベースにしたファイル名でJSONL形式の出力ファイルを保存します。

with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')

以上の手順で、{new_model_id}-outputs.jsonlというファイルに推論結果が書き出されます。

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for u-10bei/llm-jp-3-13b-lora-orca-ichikara2_Tengentoppa

Finetuned
(1122)
this model