uboza10300's picture
End of training
059efd3 verified
|
raw
history blame
2.48 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - hatexplain
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: finetuned-distilbert-hatexplainV2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: hatexplain
          type: hatexplain
          config: plain_text
          split: validation
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6845114345114345
          - name: Precision
            type: precision
            value: 0.6875552661807551
          - name: Recall
            type: recall
            value: 0.6845114345114345
          - name: F1
            type: f1
            value: 0.6848681152421926

finetuned-distilbert-hatexplainV2

This model is a fine-tuned version of distilbert-base-uncased on the hatexplain dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1306
  • Accuracy: 0.6845
  • Precision: 0.6876
  • Recall: 0.6845
  • F1: 0.6849

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.723 1.0 962 0.7320 0.6826 0.6766 0.6826 0.6703
0.6337 2.0 1924 0.7344 0.6857 0.6847 0.6857 0.6852
0.3821 3.0 2886 0.9051 0.6722 0.6885 0.6722 0.6759
0.1811 4.0 3848 1.1789 0.6743 0.6787 0.6743 0.6759

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.21.0