finetuned-distilbert-lora-hatexplain

This model is a fine-tuned version of distilbert-base-uncased on the hatexplain dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7335
  • Accuracy: 0.6767
  • Precision: 0.6679
  • Recall: 0.6767
  • F1: 0.6703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.7301 1.0 962 0.7683 0.6561 0.6475 0.6561 0.6446
0.747 2.0 1924 0.7493 0.6644 0.6611 0.6644 0.6597
0.7918 3.0 2886 0.7332 0.6774 0.6712 0.6774 0.6710
0.6507 4.0 3848 0.7357 0.6805 0.6735 0.6805 0.6747

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for uboza10300/finetuned-distilbert-lora-hatexplain

Adapter
(229)
this model

Dataset used to train uboza10300/finetuned-distilbert-lora-hatexplain