|
--- |
|
language: zh |
|
datasets: CLUECorpusSmall |
|
widget: |
|
- text: "北京是[MASK]国的首都。" |
|
|
|
|
|
|
|
--- |
|
# Chinese Xlarge Whole Word Masking RoBERTa Model |
|
|
|
## Model description |
|
|
|
This is an xlarge Chinese Whole Word Masking RoBERTa model pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) introduced in [this paper](https://arxiv.org/abs/2212.06385), which inherits [UER-py](https://github.com/dbiir/UER-py/) to support models with parameters above one billion, and extends it to a multimodal pre-training framework. |
|
|
|
In order to facilitate users in reproducing the results, we used a publicly available corpus and word segmentation tool, and provided all training details. |
|
|
|
You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the link [roberta-xlarge-wwm-chinese-cluecorpussmall](https://huggingface.co/uer/roberta-xlarge-wwm-chinese-cluecorpussmall): |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='uer/roberta-xlarge-wwm-chinese-cluecorpussmall') |
|
>>> unmasker("北京是[MASK]国的首都。") |
|
[ |
|
{'score': 0.9298505783081055, |
|
'token': 704, |
|
'token_str': '中', |
|
'sequence': '北 京 是 中 国 的 首 都 。'}, |
|
{'score': 0.05041525512933731, |
|
'token': 2769, |
|
'token_str': '我', |
|
'sequence': '北 京 是 我 国 的 首 都 。'}, |
|
{'score': 0.004921116400510073, |
|
'token': 4862, |
|
'token_str': '祖', |
|
'sequence': '北 京 是 祖 国 的 首 都 。'}, |
|
{'score': 0.0020684923510998487, |
|
'token': 3696, |
|
'token_str': '民', |
|
'sequence': '北 京 是 民 国 的 首 都 。'}, |
|
{'score': 0.0018144999630749226, |
|
'token': 3926, |
|
'token_str': '清', |
|
'sequence': '北 京 是 清 国 的 首 都 。'} |
|
] |
|
|
|
|
|
``` |
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
|
|
```python |
|
from transformers import BertTokenizer, BertModel |
|
tokenizer = BertTokenizer.from_pretrained('uer/roberta-xlarge-wwm-chinese-cluecorpussmall') |
|
model = BertModel.from_pretrained("uer/roberta-xlarge-wwm-chinese-cluecorpussmall") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
|
|
and in TensorFlow: |
|
|
|
```python |
|
from transformers import BertTokenizer, TFBertModel |
|
tokenizer = BertTokenizer.from_pretrained('uer/roberta-xlarge-wwm-chinese-cluecorpussmall') |
|
model = TFBertModel.from_pretrained("uer/roberta-xlarge-wwm-chinese-cluecorpussmall") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='tf') |
|
output = model(encoded_input) |
|
``` |
|
|
|
## Training data |
|
|
|
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. |
|
|
|
## Training procedure |
|
|
|
Models are pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 500,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. |
|
|
|
[jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool. |
|
|
|
Stage1: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--dataset_path cluecorpussmall_seq128_dataset.pt \ |
|
--processes_num 32 --seq_length 128 \ |
|
--dynamic_masking --data_processor mlm |
|
``` |
|
|
|
``` |
|
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json --dataset_path cluecorpussmall_seq128_dataset.pt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--config_path models/bert/xlarge_config.json \ |
|
--output_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq128_model \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 500000 --save_checkpoint_steps 50000 --report_steps 500 \ |
|
--learning_rate 2e-5 --batch_size 128 --deep_init \ |
|
--whole_word_masking --deepspeed_checkpoint_activations \ |
|
--data_processor mlm --target mlm |
|
``` |
|
|
|
Before stage2, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints: |
|
|
|
``` |
|
python3 models/cluecorpussmall_wwm_roberta_xlarge_seq128_model/zero_to_fp32.py models/cluecorpussmall_wwm_roberta_xlarge_seq128_model/ \ |
|
models/cluecorpussmall_wwm_roberta_xlarge_seq128_model.bin |
|
``` |
|
|
|
Stage2: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--dataset_path cluecorpussmall_seq512_dataset.pt \ |
|
--processes_num 32 --seq_length 512 \ |
|
--dynamic_masking --data_processor mlm |
|
``` |
|
|
|
``` |
|
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json --dataset_path cluecorpussmall_seq512_dataset.pt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--config_path models/bert/xlarge_config.json \ |
|
--pretrained_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq128_model.bin \ |
|
--output_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq512_model \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 500 \ |
|
--learning_rate 5e-5 --batch_size 32 \ |
|
--whole_word_masking --deepspeed_checkpoint_activations \ |
|
--data_processor mlm --target mlm |
|
``` |
|
|
|
Then, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints: |
|
|
|
``` |
|
python3 models/cluecorpussmall_wwm_roberta_xlarge_seq512_model/zero_to_fp32.py models/cluecorpussmall_wwm_roberta_xlarge_seq512_model/ \ |
|
models/cluecorpussmall_wwm_roberta_xlarge_seq512_model.bin |
|
``` |
|
|
|
Finally, we convert the pre-trained model into Huggingface's format: |
|
|
|
``` |
|
python3 scripts/convert_bert_from_tencentpretrain_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq512_model.bin \ |
|
--output_model_path pytorch_model.bin \ |
|
--layers_num 36 --type mlm |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
|
|
``` |
|
@article{zhao2019uer, |
|
title={UER: An Open-Source Toolkit for Pre-training Models}, |
|
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, |
|
journal={EMNLP-IJCNLP 2019}, |
|
pages={241}, |
|
year={2019} |
|
} |
|
|
|
@article{zhao2023tencentpretrain, |
|
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities}, |
|
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others}, |
|
journal={ACL 2023}, |
|
pages={217}, |
|
year={2023} |
|
} |
|
``` |
|
|