results / README.md
uk-rs's picture
uk-rs/CbertActiveLearning_initial_V_1.0
d8049a8 verified
metadata
library_name: transformers
base_model: medicalai/ClinicalBERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of medicalai/ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8614
  • Accuracy: 0.6145
  • Precision: 0.6243
  • Recall: 0.6145
  • F1: 0.5971
  • Roc Auc: 0.8073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
No log 1.0 42 1.0433 0.4458 0.4351 0.4458 0.3685 0.7162
No log 2.0 84 0.8946 0.5663 0.5641 0.5663 0.5559 0.7823
No log 3.0 126 0.9142 0.5783 0.6385 0.5783 0.5332 0.7896
No log 4.0 168 0.8497 0.6386 0.6434 0.6386 0.6299 0.8084
No log 5.0 210 0.8614 0.6145 0.6243 0.6145 0.5971 0.8073

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.20.3