File size: 3,189 Bytes
c1da662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# -*- coding: utf-8 -*-
"""Untitled20.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1O_tHcmidNGKAgxAiG7Su44auJSRFR1xA
"""
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
image_size = (128, 128)
batch_size = 32
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'/content/drive/MyDrive/training',
target_size=image_size,
batch_size=batch_size,
class_mode='binary'
)
test_generator = test_datagen.flow_from_directory(
'/content/drive/MyDrive/testing',
target_size=image_size,
batch_size=batch_size,
class_mode='binary'
)
from tensorflow.keras.models import Sequential
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_size[0], image_size[1], 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_generator, epochs=10, validation_data=test_generator)
evaluation = model.evaluate(test_generator)
print(f"Test Accuracy: {evaluation[1] * 100:.2f}%")
predictions = model.predict(test_generator)
predicted_labels = (predictions > 0.5).astype(int)
from sklearn.metrics import confusion_matrix, classification_report
true_labels = test_generator.classes
conf_matrix = confusion_matrix(true_labels, predicted_labels)
print("Confusion Matrix:")
print(conf_matrix)
class_report = classification_report(true_labels, predicted_labels, target_names=['not_fractured', 'fractured'])
print("Classification Report:")
print(class_report)
import matplotlib.pyplot as plt
import random
test_images, true_labels = next(test_generator)
predicted_labels = (model.predict(test_images) > 0.5).astype(int)
plt.figure(figsize=(12, 8))
for i in range(10):
plt.subplot(2, 5, i+1)
plt.imshow(test_images[i])
plt.title(f"True: {true_labels[i]}, Predicted: {predicted_labels[i]}")
plt.axis('off')
plt.show()
import cv2
image = cv2.imread('/content/drive/MyDrive/testing/fractured/1-rotated1-rotated1-rotated2.jpg')
plt.imshow(image)
image.shape
image = cv2.resize(image,(256,256))
test_input = image.reshape((1,256,256,3))
image.shape
plt.imshow(image)
test_input = image.reshape((1,256,256,3))
!pip install keras
import keras
model = keras.Sequential([
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(64, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
!ls -l model
!stat model
!file model
!pip show tensorflow
model.predict(test_input)
|