File size: 25,551 Bytes
c1da662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# -*- coding: utf-8 -*-
"""DenseNet.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1puXj_yhdhVZAi2D2P1mpDlDvccwU_63N
"""

import tensorflow as tf
from tensorflow.keras import Input
from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201
from tensorflow.keras.applications import MobileNetV3Small
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dense, Flatten, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, log_loss, jaccard_score
import numpy as np
import os
from PIL import Image
from shutil import copyfile
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from google.colab import drive
drive.mount('/content/drive')

train_data_dir =  '/content/drive/MyDrive/BoneFractureDataset/training'
test_data_dir = '/content/drive/MyDrive/BoneFractureDataset/training'
validation_data_dir = '/content/drive/MyDrive/BoneFractureDataset/training'
IMG_WIDTH, IMG_HEIGHT = 299, 299
input_shape = (IMG_WIDTH, IMG_HEIGHT, 3)

train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen = ImageDataGenerator(rescale=1./255)

train_datagen_augmented = ImageDataGenerator(
    rescale=1./255,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    vertical_flip=False,
    fill_mode='nearest'
)

train_generator = train_datagen_augmented.flow_from_directory(train_data_dir, target_size=(IMG_WIDTH, IMG_HEIGHT), batch_size=10, class_mode='categorical')

test_datagen_augmented = ImageDataGenerator(
    rescale=1./255,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    vertical_flip=False,
    fill_mode='nearest'
)
test_generator = test_datagen.flow_from_directory(test_data_dir, target_size=(IMG_WIDTH, IMG_HEIGHT), batch_size=8, class_mode='categorical', shuffle=False)

validation_datagen_augmented = ImageDataGenerator(
    rescale=1./255,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    vertical_flip=False,
    fill_mode='nearest'
)
validation_generator = validation_datagen.flow_from_directory(validation_data_dir, target_size=(IMG_WIDTH, IMG_HEIGHT), batch_size=8, class_mode='categorical', shuffle=True)

class_indices = train_generator.class_indices
print(class_indices)

classes = os.listdir(train_data_dir)
for class_name in classes:
    class_path = os.path.join(train_data_dir, class_name)
    num_images = len(os.listdir(class_path))
    print(f"Class: {class_name}, Number of images: {num_images}")

batch = train_generator.next()
for i in range(len(batch[0])):
    img = batch[0][i]
    label = batch[1][i]
    height, width, channels = img.shape
    print(f"Image {i+1} - Shape: {width}x{height}x{channels}, Label: {label}")

classes = os.listdir(test_data_dir)
for class_name in classes:
    class_path = os.path.join(test_data_dir, class_name)
    num_images = len(os.listdir(class_path))
    print(f"Class: {class_name}, Number of images: {num_images}")

batch = test_generator.next()
for i in range(len(batch[0])):
    img = batch[0][i]
    label = batch[1][i]
    height, width, channels = img.shape
    print(f"Image {i+1} - Shape: {width}x{height}x{channels}, Label: {label}")

classes = os.listdir(validation_data_dir)
for class_name in classes:
    class_path = os.path.join(validation_data_dir, class_name)
    num_images = len(os.listdir(class_path))
    print(f"Class: {class_name}, Number of images: {num_images}")

batch = validation_generator.next()
for i in range(len(batch[0])):
    img = batch[0][i]
    label = batch[1][i]
    height, width, channels = img.shape
    print(f"Image {i+1} - Shape: {width}x{height}x{channels}, Label: {label}")

print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT available")
if tf.config.list_physical_devices('GPU'):
    tf.config.experimental.set_memory_growth(tf.config.list_physical_devices('GPU')[0], True)
    print("GPU device configured")
else:
    print("No GPU device found")

from tensorflow.keras.callbacks import ModelCheckpoint
model_dir = '/kaggle/working/Checkpoints_densenet201'
if not os.path.exists(model_dir):
    os.makedirs(model_dir)
checkpoint_path = model_dir + '/cp.ckpt'
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, save_best_only=True, monitor="val_accuracy", mode="max", verbose=1)

checkpoint_path

from tensorflow.keras import models, layers, optimizers

def create_model(summary=True):
    new_input = Input(shape=(IMG_WIDTH, IMG_HEIGHT, 3))
    base_model = DenseNet201(weights='imagenet', include_top=False, input_tensor=new_input)
    flat1 = Flatten()(base_model.layers[-1].output)
    output = Dense(2, activation='softmax')(flat1)
    model = Model(inputs=base_model.inputs, outputs=output)
    model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', metrics=['accuracy'])
    if summary:
        print(model.summary())
    return model

model = create_model()

history = model.fit(train_generator, steps_per_epoch=20, epochs=20, validation_data=validation_generator, validation_steps=25, callbacks=[cp_callback])
evaluation = model.evaluate(train_generator)
print(f"Test Accuracy: {evaluation[1] * 100:.2f}%")

initial_epoch = 0
saved_history = {
    'loss': history.history['loss'],
    'accuracy': history.history['accuracy'],
    'val_loss': history.history['val_loss'],
    'val_accuracy': history.history['val_accuracy'],
}

np.save("/kaggle/working/saved_D201history.npy", saved_history)

latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
print(latest_checkpoint)
if latest_checkpoint is not None:
    loaded_model = create_model(summary=True)
    status = loaded_model.load_weights(latest_checkpoint)
    status.expect_partial()
else:
    print("No checkpoint file found in the specified directory.")

previous_history = np.load("/kaggle/working/saved_D201history.npy", allow_pickle=True).item()
initial_epoch = len(previous_history['loss'])
print(initial_epoch)

loaded_model.compile(optimizer=Adam(learning_rate=1e-5), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy'])
new_history  = loaded_model.fit(
    train_generator,
    steps_per_epoch=20,
    epochs=20,
    initial_epoch=initial_epoch,
    validation_data=validation_generator,
    validation_steps=30,
    callbacks=[cp_callback]
)

import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from matplotlib.legend_handler import HandlerLine2D
import numpy as np

plt.figure(figsize=(10, 6))
train_loss, = plt.plot(previous_history['loss'], label='Train Loss', color='blue')
val_loss, = plt.plot(previous_history['val_loss'], label='Validation Loss', color='orange')
train_accuracy, = plt.plot(previous_history['accuracy'], label='Train Accuracy',  color='green')
val_accuracy, = plt.plot(previous_history['val_accuracy'], label='Validation Accuracy', color='red')
plt.title('Model Performance during Training', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12},pad=10)
plt.xlabel('No. of Epochs', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
plt.xticks(np.linspace(0, 150, num=16), fontname='Serif', weight='bold')
plt.yticks(np.linspace(0, 5, num=11), fontname='Serif', weight='bold')
plt.xlim(0, 150)
plt.ylim(0, 5)
legend_lines = [
    Line2D([0], [0], color='blue', lw=3),
    Line2D([0], [0], color='orange', lw=3),
    Line2D([0], [0], color='green', lw=3),
    Line2D([0], [0], color='red', lw=3)
]
plt.legend(legend_lines, ['Train Loss', 'Validation Loss', 'Train Accuracy', 'Validation Accuracy'],
           loc='lower center', bbox_to_anchor=(0.5, 1.1), ncol=5,
           prop={'family': 'Serif', 'weight': 'bold', 'size': 8}, frameon=False,
           handler_map={Line2D: HandlerLine2D(numpoints=5)})
plt.gca().xaxis.labelpad = 10
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.tight_layout()
plt.show()

latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
print(checkpoint_dir)
if latest_checkpoint is not None:
    loaded_model = create_model(summary=True)
    status = loaded_model.load_weights(latest_checkpoint)
    status.expect_partial()
else:
    print("No checkpoint file found in the specified directory.")

loaded_model.compile(optimizer=Adam(learning_rate=1e-3), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy'])

test_loss, test_acc = loaded_model.evaluate(test_generator)
print(f"Test Accuracy: {test_acc}")

# Commented out IPython magic to ensure Python compatibility.
# %whos

true_classes = [1, 0, 1, 1, 0]
predicted_classes = [1, 1, 0, 1, 0]
print(f"Accuracy: {accuracy_score(true_classes, predicted_classes)}")
print(f"Precision: {precision_score(true_classes, predicted_classes)}")
print(f"Recall: {recall_score(true_classes, predicted_classes)}")
print(f"F1 Score: {f1_score(true_classes, predicted_classes)}")
print(f"Log Loss: {log_loss(true_classes, predicted_classes)}")
print(f"Jaccard Score: {jaccard_score(true_classes, predicted_classes)}")

print("\nClassification Report:")
print(classification_report(true_classes, predicted_classes,digits=4))

conf_matrix = confusion_matrix(true_classes, predicted_classes)
plt.figure(figsize=(6, 4.5))
custom_palette = sns.color_palette(palette='blend:#7AB,#EDA')
font = {'family': 'Serif', 'weight': 'bold', 'size': 12}
heatmap = sns.heatmap(conf_matrix, annot=True, fmt='d', cmap=custom_palette,vmin=0,vmax=350,
                      xticklabels=['Fractured', 'Non_fractured'], yticklabels=['Fractured', 'Non_fractured'],annot_kws={"family": "Serif",'weight': 'bold', 'size': 12})
heatmap.set_xlabel('Predicted Labels', fontdict=font)
heatmap.set_ylabel('True Labels', fontdict=font)
heatmap.set_title('Fracture Classification', fontdict=font, pad=12)
heatmap.set_xticklabels(heatmap.get_xticklabels(), fontname='Serif', fontsize=12)
heatmap.set_yticklabels(heatmap.get_yticklabels(), fontname='Serif', fontsize=12)
cbar = heatmap.collections[0].colorbar
cbar.set_label('Count', fontdict=font)
cbar.ax.tick_params(labelsize=10)
plt.gca().xaxis.labelpad = 10
plt.tight_layout()
plt.show()

import numpy as np

print(type(true_classes))
print(type(predictions))

!pip install scikit-learn
!pip install matplotlib

from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
from matplotlib.patches import Patch

print(type(predictions))

predictions = np.array(predictions)

def save_and_display_gradcam(img_path, heatmap, alpha=0.7):
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
    superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
    plt.figure(figsize=(4, 4))
    plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
    plt.title('GradCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
    plt.axis('off')
    plt.tight_layout()
    plt.show()

def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
    model.layers[-1].activation = None
    grad_model = tf.keras.models.Model(
        [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
    )
    with tf.GradientTape() as tape:
        last_conv_layer_output, preds = grad_model(img_array)
        if pred_index is None:
            pred_index = tf.argmax(preds[0])
        class_channel = preds[:, pred_index]
    grads = tape.gradient(class_channel, last_conv_layer_output)
    pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
    last_conv_layer_output = last_conv_layer_output[0]
    heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
    heatmap = tf.squeeze(heatmap)
    heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
    return heatmap.numpy()

def make_prediction_and_visualize_():
    img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    rescaled_img = img/255.0
    batch_pred = np.expand_dims(rescaled_img, 0)
    last_conv_layer_name = 'conv5_block32_concat'
    heatmap = make_gradcam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
    save_and_display_gradcam(img_path, heatmap)
make_prediction_and_visualize_()

def save_and_display_gradcam_plusplus(img_path, heatmap, alpha=0.7):
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
    superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
    plt.figure(figsize=(4, 4))
    plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
    plt.title('GradCAM++', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
    plt.axis('off')
    plt.tight_layout()
    plt.show()

def make_gradcam_plusplus_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
    model.layers[-1].activation = None
    grad_model = tf.keras.models.Model(
        [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
    )
    with tf.GradientTape() as tape:
        last_conv_layer_output, preds = grad_model(img_array)
        if pred_index is None:
            pred_index = tf.argmax(preds[0])
        class_output = preds[:, pred_index]
        conv_output = last_conv_layer_output[0]
    grads = tape.gradient(class_output, last_conv_layer_output)
    pooled_grads = tf.reduce_mean(grads[0], axis=(0, 1, 2))
    last_conv_layer_output = last_conv_layer_output[0]
    guided_grads = tf.cast(last_conv_layer_output > 0, 'float32') * grads[0]
    weights = tf.reduce_mean(guided_grads, axis=(0, 1))
    heatmap = tf.reduce_sum(tf.multiply(weights, last_conv_layer_output), axis=-1)
    heatmap = tf.maximum(heatmap, 0) / tf.reduce_max(heatmap)
    return heatmap.numpy()

def make_prediction_and_visualize_gradcam_plusplus():
    img_path = '/content/drive/MyDrive/testing/not_fractured/1-rotated1-rotated1-rotated1-rotated1.jpg'
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    rescaled_img = img / 255.0
    batch_pred = np.expand_dims(rescaled_img, 0)
    last_conv_layer_name = 'conv5_block32_concat'
    heatmap = make_gradcam_plusplus_heatmap(batch_pred, loaded_model, last_conv_layer_name)
    save_and_display_gradcam_plusplus(img_path, heatmap)
make_prediction_and_visualize_gradcam_plusplus()

def save_and_display_scorecam(img_path, heatmap, alpha=0.7):
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
    superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
    plt.figure(figsize=(4, 4))
    plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
    plt.title('ScoreCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
    plt.axis('off')
    plt.tight_layout()
    plt.show()

import tensorflow as tf
def make_scorecam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
    model.layers[-1].activation = None
    grad_model = tf.keras.models.Model(
        [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
    )
    with tf.GradientTape() as tape:
        last_conv_layer_output, preds = grad_model(img_array)
        if pred_index is None:
            pred_index = tf.argmax(preds[0])
        class_output = preds[:, pred_index]
        conv_output = last_conv_layer_output[0]
    grads = tape.gradient(class_output, last_conv_layer_output)
    guided_grads = tf.cast(grads[0] > 0, 'float32') * grads[0]
    weights = tf.reduce_mean(guided_grads, axis=(0, 1))
    cam = tf.reduce_sum(tf.multiply(weights, conv_output), axis=-1)
    cam = tf.maximum(cam, 0)
    cam /= tf.reduce_max(cam)
    return cam.numpy()

def make_prediction_and_visualize_scorecam():
    img_path = '/content/drive/MyDrive/BoneFractureDataset/training/fractured/10.jpg'
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    rescaled_img = img/255.0
    batch_pred = np.expand_dims(rescaled_img, 0)
    last_conv_layer_name = 'conv5_block32_concat'
    heatmap = make_scorecam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
    save_and_display_scorecam(img_path, heatmap)
make_prediction_and_visualize_scorecam()

def save_and_display_faster_scorecam(img_path, heatmap, alpha=0.7):
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
    superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
    plt.figure(figsize=(4, 4))
    plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
    plt.title('Faster ScoreCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
    plt.axis('off')
    plt.tight_layout()
    plt.show()

def faster_scorecam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
    model.layers[-1].activation = None
    grad_model = tf.keras.models.Model(
        [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
    )
    with tf.GradientTape() as tape:
        last_conv_layer_output, preds = grad_model(img_array)
        if pred_index is None:
            pred_index = tf.argmax(preds[0])
        class_output = preds[:, pred_index]
        conv_output = last_conv_layer_output[0]
    grads = tape.gradient(class_output, last_conv_layer_output)[0]
    weights = tf.reduce_mean(grads, axis=(0, 1))
    weights = tf.reshape(weights, (1, 1, -1))
    conv_output = tf.expand_dims(conv_output, axis=0)
    conv_output = tf.expand_dims(conv_output, axis=-1)
    cam = tf.matmul(weights, conv_output)
    cam = tf.squeeze(cam)
    cam = tf.maximum(cam, 0)
    cam /= tf.reduce_max(cam)
    return cam.numpy()

def make_prediction_and_visualize_faster_scorecam():
    img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    rescaled_img = img/255.0
    batch_pred = np.expand_dims(rescaled_img, 0)
    last_conv_layer_name = 'conv5_block32_concat'
    heatmap = faster_scorecam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
    save_and_display_faster_scorecam(img_path, heatmap)
make_prediction_and_visualize_faster_scorecam()

def save_and_display_layercam(img_path, heatmap, alpha=0.7):
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
    superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
    plt.figure(figsize=(4, 4))
    plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
    plt.title('LayerCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
    plt.axis('off')
    plt.tight_layout()
    plt.show()

import tensorflow as tf
def generate_layercam_heatmap(img_array, model, last_conv_layer_name, target_class_index=None):
    model.layers[-1].activation = None
    grad_model = tf.keras.models.Model(
        [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
    )
    with tf.GradientTape() as tape:
        last_conv_layer_output, preds = grad_model(img_array)
        if target_class_index is None:
            target_class_index = tf.argmax(preds[0])
        class_output = preds[:, target_class_index]
        conv_output = last_conv_layer_output[0]
    grads = tape.gradient(class_output, last_conv_layer_output)[0]
    weights = tf.reduce_mean(grads, axis=(0, 1))
    weights = tf.reshape(weights, (1, 1, -1))
    conv_output = tf.expand_dims(conv_output, axis=0)
    conv_output = tf.expand_dims(conv_output, axis=-1)
    cam = tf.matmul(weights, conv_output)
    cam = tf.squeeze(cam)
    cam = tf.maximum(cam, 0)
    cam /= tf.reduce_max(cam)
    return cam.numpy()

def make_prediction_and_visualize_layercam():
    img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
    img = cv2.imread(img_path)
    img = cv2.resize(img, (299, 299))
    rescaled_img = img/255.0
    batch_pred = np.expand_dims(rescaled_img, 0)
    last_conv_layer_name = 'conv5_block32_concat'
    heatmap = generate_layercam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
    save_and_display_layercam(img_path, heatmap)
make_prediction_and_visualize_layercam()

def save_and_display_saliency_map(img_path, saliency_map):
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    saliency_map = cv2.resize(saliency_map, (img.shape[1], img.shape[0]))
    saliency_map = (saliency_map - saliency_map.min()) / (saliency_map.max() - saliency_map.min())
    heatmap = cv2.applyColorMap(np.uint8(255 * saliency_map), cv2.COLORMAP_JET)
    heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    alpha = 0.4
    blended = cv2.addWeighted(img, alpha, heatmap, 1 - alpha, 0)
    plt.figure(figsize=(4, 4))
    plt.imshow(blended)
    plt.title('Vanilla Saliency', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
    plt.axis('off')
    plt.tight_layout()
    plt.show()

def generate_vanilla_saliency_map(img_array, model):
    img_tensor = tf.convert_to_tensor(img_array)
    img_tensor = tf.expand_dims(img_tensor, axis=0)
    with tf.GradientTape() as tape:
        tape.watch(img_tensor)
        preds = model(img_tensor)
        top_pred_index = tf.argmax(preds[0])
        top_class_score = preds[:, top_pred_index]
    grads = tape.gradient(top_class_score, img_tensor)
    saliency_map = tf.abs(grads)
    saliency_map = tf.reduce_max(saliency_map, axis=-1)
    return saliency_map[0].numpy()

def make_prediction_and_visualize_vanilla_saliency():
    img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img, (299, 299))
    img = img / 255.0
    saliency_map = generate_vanilla_saliency_map(img, loaded_model)
    save_and_display_saliency_map(img_path, saliency_map)
make_prediction_and_visualize_vanilla_saliency()

def save_and_display_SmoothGrad(img_path, saliency_map):
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    saliency_map = cv2.resize(saliency_map, (img.shape[1], img.shape[0]))
    saliency_map = (saliency_map - saliency_map.min()) / (saliency_map.max() - saliency_map.min())
    heatmap = cv2.applyColorMap(np.uint8(255 * saliency_map), cv2.COLORMAP_JET)
    heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    alpha = 0.4
    blended = cv2.addWeighted(img, alpha, heatmap, 1 - alpha, 0)
    plt.figure(figsize=(4, 4))
    plt.imshow(blended)
    plt.title('Smooth Grad', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
    plt.axis('off')
    plt.tight_layout()
    plt.show()

def generate_smoothgrad_saliency_map(img_array, model, n=50, sigma=1.0):
    img_tensor = tf.convert_to_tensor(img_array)
    img_tensor = tf.expand_dims(img_tensor, axis=0)
    img_tensor = tf.cast(img_tensor, dtype=tf.float32)
    with tf.GradientTape() as tape:
        tape.watch(img_tensor)
        preds = model(img_tensor)
        top_pred_index = tf.argmax(preds[0])
        top_class_score = preds[:, top_pred_index]
    total_gradients = tf.zeros_like(img_tensor)
    for _ in range(n):
        noise = tf.random.normal(shape=img_tensor.shape, mean=0.0, stddev=sigma)
        perturbed_img = img_tensor + noise
        with tf.GradientTape() as perturbed_tape:
            perturbed_tape.watch(perturbed_img)
            perturbed_preds = model(perturbed_img)
            perturbed_top_class_score = perturbed_preds[:, top_pred_index]
        perturbed_grads = perturbed_tape.gradient(perturbed_top_class_score, perturbed_img)
        total_gradients += perturbed_grads
    averaged_gradients = total_gradients / n
    saliency_map = tf.abs(averaged_gradients)
    saliency_map = tf.reduce_max(saliency_map, axis=-1)
    return saliency_map[0].numpy()

def make_prediction_and_visualize_smoothgrad_saliency():
    img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img, (299, 299))
    img = img / 255.0
    heatmap = generate_smoothgrad_saliency_map(img, loaded_model)
    save_and_display_SmoothGrad(img_path, heatmap)
make_prediction_and_visualize_smoothgrad_saliency()