You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

samolet_encoder_finetuned

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the ummagumm-a/samolet_frames dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30.0

Training results

Training Loss Epoch Step Validation Loss
0.3356 1.0 87 0.3257
0.2405 2.0 174 0.2403
0.1623 3.0 261 0.1606
0.1452 4.0 348 0.1454
0.1373 5.0 435 0.1413
0.1304 6.0 522 0.1369
0.129 7.0 609 0.1346
0.1291 8.0 696 0.1299
0.1277 9.0 783 0.1294
0.1244 10.0 870 0.1284
0.1275 11.0 957 0.1285
0.1196 12.0 1044 0.1264
0.1219 13.0 1131 0.1263
0.1195 14.0 1218 0.1265
0.1231 15.0 1305 0.1239
0.1208 16.0 1392 0.1216
0.118 17.0 1479 0.1223
0.1143 18.0 1566 0.1201
0.1177 19.0 1653 0.1198
0.1139 20.0 1740 0.1194
0.1152 21.0 1827 0.1193
0.1162 22.0 1914 0.1199
0.1113 23.0 2001 0.1183
0.1134 24.0 2088 0.1183
0.1136 25.0 2175 0.1184
0.1132 26.0 2262 0.1196
0.1156 27.0 2349 0.1185
0.1153 28.0 2436 0.1166
0.1139 29.0 2523 0.1153
0.1103 30.0 2610 0.1164

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .