File size: 4,085 Bytes
ff7b381
dbe9130
 
 
 
 
 
 
 
 
 
 
 
 
 
ff7b381
 
dbe9130
 
ff7b381
dbe9130
ff7b381
 
 
 
 
 
dbe9130
 
ff7b381
 
93b750b
ff7b381
 
8844b54
ff7b381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842f708
 
 
ff7b381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
pipeline_tag: image-to-text
tags:
- image-captioning
- visual-question-answering
datasets:
- sbu_captions
- visual_genome
- HuggingFaceM4/VQAv2
- ChristophSchuhmann/MS_COCO_2017_URL_TEXT
widget:
- text: "What is the invoice number?"
  src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png"
- text: "What is the purchase amount?"
  src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg"
language:
- en
license: apache-2.0
base_model: unum-cloud/uform-vl-english
---

<h1 align="center">UForm</h1>
<h3 align="center">
Pocket-Sized Multimodal AI<br/>
For Content Understanding and Generation<br/>
</h3>

<Gallery />

## Description 

UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model consists of two parts: 

1. [UForm Vision Encoder](https://huggingface.co/unum-cloud/uform-vl-english)
2. [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) manually tuned on the instructions dataset

The model was pre-trained on: MSCOCO, SBU Captions, Visual Genome, VQAv2, GQA and a few internal datasets.

### Usage

```bash
pip install uform
```

The generative model can be used to caption images, summarize their content, or answer questions about them.
The exact behavior is controlled by prompts.

```python
from uform.gen_model import VLMForCausalLM, VLMProcessor

model = VLMForCausalLM.from_pretrained("unum-cloud/uform-gen")
processor = VLMProcessor.from_pretrained("unum-cloud/uform-gen")

# [cap] Narrate the contents of the image with precision.
# [cap] Summarize the visual content of the image.
# [vqa] What is the main subject of the image?
prompt = "[cap] Summarize the visual content of the image."
image = Image.open("zebra.jpg")

inputs = processor(texts=[prompt], images=[image], return_tensors="pt")
with torch.inference_mode():
     output = model.generate(
        **inputs,
        do_sample=False,
        use_cache=True,
        max_new_tokens=128,
        eos_token_id=32001,
        pad_token_id=processor.tokenizer.pad_token_id
    )

prompt_len = inputs["input_ids"].shape[1]
decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
```


## Evaluation

For captioning evaluation we measure CLIPScore and RefCLIPScore¹.

| Model                               | Size | Caption Length | CLIPScore | RefCLIPScore |
| :---------------------------------- | ---: | -------------: | --------: | -----------: |
| `llava-hf/llava-1.5-7b-hf`          |   7B |           Long |     0.878 |        0.529 |
| `llava-hf/llava-1.5-7b-hf`          |   7B |          Short |     0.886 |        0.531 |
|                                     |
| `Salesforce/instructblip-vicuna-7b` |   7B |           Long |     0.902 |        0.534 |
| `Salesforce/instructblip-vicuna-7b` |   7B |          Short |     0.848 |        0.523 |
|                                     |                                                  |
| `unum-cloud/uform-gen`              | 1.5B |           Long |     0.847 |        0.523 |
| `unum-cloud/uform-gen`              | 1.5B |          Short |     0.842 |        0.522 |

Results for VQAv2 evaluation.

| Model                      | Size | Accuracy |
| :------------------------- | ---: | -------: |
| `llava-hf/llava-1.5-7b-hf` |   7B |     78.5 |
| `unum-cloud/uform-gen`     | 1.5B |     66.5 |

¹ We used `apple/DFN5B-CLIP-ViT-H-14-378` CLIP model.


## Speed

On RTX 3090, the following performance is expected on text token generation using `float16`, equivalent PyTorch settings, and greedy decoding.

| Model                               | Size |               Speed |   Speedup |
| :---------------------------------- | ---: | ------------------: | --------: |
| `llava-hf/llava-1.5-7b-hf`          |   7B |  ~ 40 tokens/second |           |
| `Salesforce/instructblip-vicuna-7b` |   7B |  ~ 40 tokens/second |           |
| `unum-cloud/uform-gen`              | 1.5B | ~ 140 tokens/second | __x 3.5__ |