SOLAR-10.7B-v1.0 / README.md
Limerobot's picture
Add license section
9b879c7
|
raw
history blame
3.83 kB
metadata
license: apache-2.0

Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!

Introduction

We introduce the first 10.7 billion (B) parameter model, SOLAR-10.7B. It's compact, yet remarkably powerful, and demonstrates unparalleled state-of-the-art performance in models with parameters under 30B.

We developed the Depth Up-Scaling technique. Built on the Llama2 architecture, SOLAR-10.7B incorporates the innovative Upstage Depth Up-Scaling. We then integrated Mistral 7B weights into the upscaled layers, and finally, continued pre-training for the entire model.

Depth-Upscaled SOLAR-10.7B has remarkable performance. It outperforms models with up to 30B parameters, even surpassing the recent Mixtral 8X7B model. For detailed information, please refer to the experimental table. Solar 10.7B is an ideal choice for fine-tuning. SOLAR-10.7B offers robustness and adaptability for your fine-tuning needs. Our simple instruction fine-tuning using the SOLAR-10.7B pre-trained model yields significant performance improvements (SOLAR-10.7B-Instruct-v1.0).

Evaluation Results

Model H6 Model Size
SOLAR-10.7B-Instruct-v1.0 74.20 ~ 11B
mistralai/Mixtral-8x7B-Instruct-v0.1 72.62 ~ 46.7B
01-ai/Yi-34B-200K 70.81 ~ 34B
01-ai/Yi-34B 69.42 ~ 34B
mistralai/Mixtral-8x7B-v0.1 68.42 ~ 46.7B
meta-llama/Llama-2-70b-hf 67.87 ~ 70B
tiiuae/falcon-180B 67.85 ~ 180B
SOLAR-10.7B-v1.0 66.04 ~11B
mistralai/Mistral-7B-Instruct-v0.2 65.71 ~ 7B
Qwen/Qwen-14B 65.86 ~ 14B
01-ai/Yi-34B-Chat 65.32 ~34B
meta-llama/Llama-2-70b-chat-hf 62.4 ~ 70B
mistralai/Mistral-7B-v0.1 60.97 ~ 7B
mistralai/Mistral-7B-Instruct-v0.1 54.96 ~ 7B

Usage Instructions

This model is pre-trained and is capable of just generating random text. To use it for chatting, you must fine-tune the model first.

Version

Make sure you have the correct version of the transformers library installed:

pip install transformers==4.35.2

Loading the Model

Use the following Python code to load the model:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-v1.0")
model = AutoModelForCausalLM.from_pretrained(
    "Upstage/SOLAR-10.7B-v1.0",
    device_map="auto",
    torch_dtype=torch.float16,
)

Generating Text

To generate text, use the following Python code:

text = "Hi, my name is "
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

License

The Upstage AI Team

Upstage is creating the best LLM and DocAI. Please find more information at https://upstage.ai

Contact Us

Any questions and suggestions, please use the discussion tab. If you want to contact us directly, drop an email to [email protected]