import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datasets import Dataset
device = "cuda"
path = "Unbabel/mfineweb-edu-classifier"
model = AutoModelForSequenceClassification.from_pretrained(
path,
device_map=device,
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
def tokenize(examples):
return tokenizer(examples["text"], truncation=True, max_length=512)
texts = [
"This is a text",
"this is another text to classify"
]
model_inputs = [
tokenizer(text, truncation=True, max_length=512) for text in texts
]
with torch.no_grad():
for model_input in model_inputs:
output = model(input_ids)