pipeline_tag: text-classification
language:
- multilingual
license: apache-2.0
library_name: transformers
Model Description
This model was build by translating the fine-Edu annotations into 15 languages using the best proprietary LLM for translation in the world: Tower LLM 70B.
The translation model excels at translating entire documents and thus its the perfect fit to translate the texts we will use to train our classifier.
The classifier is trained for English, German, Spanish, Japanese, Chinese, Russian, Hindi, Czech, Ukrainian, Icelandic, Portuguese, French, Dutch, Italian and Korean. Since its build on top of mdeberta-v3-base it should be able to generalize across other languages.
Running Model:
To run inference you must install
pip install transformers[torch]
pip install datasets
pip install pandas
pip install tqdm
After installing those libraries you can sun the following code:
import pandas as pd
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from tqdm import tqdm
device = "cuda"
path = "Unbabel/mfineweb-edu-classifier"
model = AutoModelForSequenceClassification.from_pretrained(
path,
device_map=device,
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
def get_model_outputs(texts):
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512).to(model.device)
with torch.no_grad():
outputs = model(**inputs)
score = outputs.logits
prob = torch.nn.functional.sigmoid(outputs.binary_logits)
return score.cpu(), prob.cpu()
def batchify_texts(texts, batch_size):
for i in range(0, len(texts), batch_size):
yield texts[i:i + batch_size]
# TODO: replace the next line with the texts you want to classify
texts = LIST_WITH_TEXTS_TO_CLASSIFY
batch_size = 64 # Adjust based on your available memory and model capacity
num_batches = (len(texts) + batch_size - 1) // batch_size
all_scores = []
all_probs = []
with tqdm(total=num_batches, dynamic_ncols=True) as pbar:
for batch_num, batch in enumerate(batchify_texts(texts, batch_size), 1):
score, probs = get_model_outputs(batch)
all_scores.append(score)
all_probs.append(probs)
pbar.set_description(f"Processing Batch {batch_num}/{num_batches}")
pbar.update(1)
# SCORES is the output of the regression head and should reflect the
# educational score of the text!
scores = torch.cat(all_scores, dim=0).squeeze()
## BINARY_PRED is the output of the classification head that tells
# if a text has an acceptable educational score or not.
# NOTE: Converting the scores into binary predictions is also possible
all_probs = torch.cat(all_probs, dim=0).squeeze()
binary_pred = (all_probs >= 0.5).numpy().astype(int)
English Results:
When testing the model on an english partition with 37537 samples the results are comparable to the original FineEdu-classifier.
Regression head results:
precision recall f1-score support
0 0.80 0.53 0.64 5130
1 0.80 0.88 0.83 21602
2 0.63 0.58 0.61 7849
3 0.54 0.62 0.58 2310
4 0.62 0.48 0.54 645
5 0.00 0.00 0.00 1
accuracy 0.74 37537
macro avg 0.56 0.51 0.53 37537
weighted avg 0.74 0.74 0.74 37537
Binary head results:
precision recall f1-score support
0 0.98 0.97 0.98 34581
1 0.71 0.74 0.73 2956
accuracy 0.96 37537
macro avg 0.85 0.86 0.85 37537
weighted avg 0.96 0.96 0.96 37537
Multilingual Results:
If we evaluate on the same texts translated into 15 different languages are almost identical!
Regression head results:
precision recall f1-score support
0 0.80 0.50 0.61 5130
1 0.79 0.87 0.83 21602
2 0.61 0.58 0.59 7849
3 0.52 0.61 0.56 2310
4 0.61 0.38 0.47 645
5 0.00 0.00 0.00 1
accuracy 0.73 37537
macro avg 0.55 0.49 0.51 37537
weighted avg 0.73 0.73 0.73 37537
Binary head results:
precision recall f1-score support
0 0.98 0.97 0.97 34581
1 0.70 0.71 0.71 2956
accuracy 0.95 37537
macro avg 0.84 0.84 0.84 37537
weighted avg 0.95 0.95 0.95 37537