|
--- |
|
datasets: |
|
- jondurbin/gutenberg-dpo-v0.1 |
|
- Qwen/Qwen2.5-14B-Instruct |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
base_model: |
|
- Qwen/Qwen2.5-14B-Instruct |
|
- v000000/Qwen2.5-14B-Gutenberg-1e-Delta |
|
- tanliboy/lambda-qwen2.5-14b-dpo-test |
|
library_name: transformers |
|
tags: |
|
- qwen |
|
- qwen2.5 |
|
- finetune |
|
- dpo |
|
- qwen2 |
|
- chat |
|
- conversational |
|
- instruct |
|
- storywriting |
|
- roleplay |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Qwen2.5-Lumen-14B |
|
|
|
* *Qwen direct preference optimization finetuned for ~3 epochs.* |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/ccriYlPOxZLDUI-o2XZ0K.png) |
|
|
|
<b>A qwen2.5 preference finetune, targeting prompt adherence, storywriting and roleplay.</b> |
|
|
|
------------------------------------------------------------------------------- |
|
|
|
## Training Notes |
|
|
|
Trained [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) for 2 epochs on NVidia A100, and on dataset [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1), saving different checkpoints along the way. |
|
|
|
[Tanliboy](https://huggingface.co/tanliboy) trained [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) for 1 epoch on [HuggingFaceH4/ultrafeedback_binarized](HuggingFaceH4/ultrafeedback_binarized), (Credit to Tanliboy! *Check out his model [here](https://huggingface.co/tanliboy/lambda-qwen2.5-14b-dpo-test)*) |
|
|
|
*Mass checkpoint merged, Based on Qwen2.5-14B-Instruct (Base Model).* |
|
|
|
## Merge |
|
|
|
* Merged with a sophosympatheia's <b>SLERP</b> gradient *"Ultrafeedback-Binarized DPO"* and *"Gutenberg DPO"* |
|
|
|
* Merged with a sophosympatheia's <b>SLERP</b> gradient *"Qwen2.5-14B-Instruct"* and *"Gutenberg DPO"* |
|
|
|
* Merged all <b>DPO checkpoints</b> and <b>SLERP</b> variations with <b>MODEL_STOCK</b> to analyze geometric properties and get the most performant aspects of all runs/merges. Model Stock was chosen due to the similarity between the merged models. |
|
|
|
## Recipe |
|
|
|
```yaml |
|
models: |
|
- model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta |
|
- model: v000000/Qwen2.5-14B-Gutenberg-0.6e-Sequential |
|
- model: v000000/Qwen2.5-14B-Gutenberg-0.25e-Early |
|
- model: v000000/Qwen2.5-14B-Gutenberg-2e-Sequential |
|
- model: v000000/Qwen2.5-14B-Gutenberg-0.37e-Early |
|
- model: v000000/Qwen2.5-14B-Gutenberg-2e-Zeta |
|
- model: v000000/Qwen2.5-14B-Gutenberg-1e-Theta |
|
- model: tanliboy/lambda-qwen2.5-14b-dpo-test |
|
- model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta |
|
- model: tanliboy/lambda-qwen2.5-14b-dpo-test |
|
- model: v000000/Qwen2.5-14B-Gutenberg-UltraLambda-Slerpeno |
|
- model: v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno |
|
base_model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta |
|
merge_method: model_stock |
|
dtype: bfloat16 |
|
``` |
|
|
|
### Finetune and merge |
|
|
|
This is a merge and finetune of pre-trained language models. |
|
|
|
### Models Merged |
|
|
|
[Arxiv 2403.19522](https://arxiv.org/abs/2403.19522) |
|
|
|
The following models were included in the merge: |
|
* v000000/Qwen2.5-14B-Gutenberg-1e-Delta |
|
* v000000/Qwen2.5-14B-Gutenberg-0.6e-Sequential |
|
* v000000/Qwen2.5-14B-Gutenberg-0.25e-Early |
|
* v000000/Qwen2.5-14B-Gutenberg-2e-Sequential |
|
* v000000/Qwen2.5-14B-Gutenberg-0.37e-Early |
|
* v000000/Qwen2.5-14B-Gutenberg-2e-Zeta |
|
* v000000/Qwen2.5-14B-Gutenberg-1e-Theta |
|
* v000000/Qwen2.5-14B-Gutenberg-UltraLambda-Slerpeno |
|
* v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno |
|
* tanliboy/lambda-qwen2.5-14b-dpo-test |
|
|