Qwen2.5-Lumen-14B / README.md
v000000's picture
Update README.md
d154987 verified
|
raw
history blame
3.47 kB
metadata
datasets:
  - jondurbin/gutenberg-dpo-v0.1
  - Qwen/Qwen2.5-14B-Instruct
  - HuggingFaceH4/ultrafeedback_binarized
base_model:
  - Qwen/Qwen2.5-14B-Instruct
  - v000000/Qwen2.5-14B-Gutenberg-1e-Delta
  - tanliboy/lambda-qwen2.5-14b-dpo-test
library_name: transformers
tags:
  - qwen
  - qwen2.5
  - finetune
  - dpo
  - orpo
  - qwen2
  - chat
  - conversational
  - instruct
  - storywriting
  - roleplay
license: apache-2.0
language:
  - en
pipeline_tag: text-generation

Qwen2.5-Lumen-14B

  • Qwen direct preference optimization finetuned for ~3 epochs.

image/png

A qwen2.5 preference finetune, targeting prompt adherence, storywriting and roleplay.


Training Notes

Trained Qwen2.5-14B-Instruct for 2 epochs on NVidia A100, and on dataset jondurbin/gutenberg-dpo-v0.1, saving different checkpoints along the way.

Tanliboy trained Qwen2.5-14B-Instruct for 1 epoch on HuggingFaceH4/ultrafeedback_binarized, (Credit to Tanliboy! Check out his model here)

Mass checkpoint merged, Based on Qwen2.5-14B-Instruct (Base Model).

Merge

  • Merged with a sophosympatheia's SLERP gradient "Ultrafeedback-Binarized DPO" and "Gutenberg DPO"

  • Merged with a sophosympatheia's SLERP gradient "Qwen2.5-14B-Instruct" and "Gutenberg DPO"

  • Merged all DPO checkpoints and SLERP variations with MODEL_STOCK to analyze geometric properties and get the most performant aspects of all runs/merges. Model Stock was chosen due to the similarity between the merged models.

Recipe

models:
  - model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta
  - model: v000000/Qwen2.5-14B-Gutenberg-0.6e-Sequential
  - model: v000000/Qwen2.5-14B-Gutenberg-0.25e-Early
  - model: v000000/Qwen2.5-14B-Gutenberg-2e-Sequential
  - model: v000000/Qwen2.5-14B-Gutenberg-0.37e-Early
  - model: v000000/Qwen2.5-14B-Gutenberg-2e-Zeta
  - model: v000000/Qwen2.5-14B-Gutenberg-1e-Theta
  - model: tanliboy/lambda-qwen2.5-14b-dpo-test
  - model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta
  - model: tanliboy/lambda-qwen2.5-14b-dpo-test
  - model: v000000/Qwen2.5-14B-Gutenberg-UltraLambda-Slerpeno
  - model: v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
base_model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta
merge_method: model_stock
dtype: bfloat16

Finetune and merge

This is a merge and finetune of pre-trained language models.

Models Merged

Arxiv 2403.19522

The following models were included in the merge:

  • v000000/Qwen2.5-14B-Gutenberg-1e-Delta
  • v000000/Qwen2.5-14B-Gutenberg-0.6e-Sequential
  • v000000/Qwen2.5-14B-Gutenberg-0.25e-Early
  • v000000/Qwen2.5-14B-Gutenberg-2e-Sequential
  • v000000/Qwen2.5-14B-Gutenberg-0.37e-Early
  • v000000/Qwen2.5-14B-Gutenberg-2e-Zeta
  • v000000/Qwen2.5-14B-Gutenberg-1e-Theta
  • v000000/Qwen2.5-14B-Gutenberg-UltraLambda-Slerpeno
  • v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
  • tanliboy/lambda-qwen2.5-14b-dpo-test
  • Context Length: Full 131,072 tokens and generation 8192 tokens