|
--- |
|
license: mit |
|
base_model: facebook/mbart-large-50 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- lr-sum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mbart-large-50-finetuned-lrsum-fr |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: lr-sum |
|
type: lr-sum |
|
config: fra |
|
split: validation |
|
args: fra |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.2579 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbart-large-50-finetuned-lrsum-fr |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the lr-sum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0341 |
|
- Rouge1: 0.2579 |
|
- Rouge2: 0.1232 |
|
- Rougel: 0.2142 |
|
- Rougelsum: 0.2153 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 1.8023 | 1.0 | 141 | 1.2331 | 0.2511 | 0.115 | 0.205 | 0.2088 | |
|
| 8.3626 | 2.0 | 282 | 1.3380 | 0.2601 | 0.1213 | 0.2106 | 0.2155 | |
|
| 0.848 | 3.0 | 423 | 1.5333 | 0.2431 | 0.1109 | 0.2008 | 0.2022 | |
|
| 0.4302 | 4.0 | 564 | 1.4443 | 0.2487 | 0.1153 | 0.204 | 0.2063 | |
|
| 0.2181 | 5.0 | 705 | 1.6967 | 0.2445 | 0.1081 | 0.1977 | 0.2001 | |
|
| 0.1131 | 6.0 | 846 | 1.8275 | 0.2704 | 0.1358 | 0.2249 | 0.2265 | |
|
| 0.052 | 7.0 | 987 | 1.9579 | 0.2549 | 0.1161 | 0.2085 | 0.2099 | |
|
| 0.0245 | 8.0 | 1128 | 2.0341 | 0.2579 | 0.1232 | 0.2142 | 0.2153 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|