|
--- |
|
license: other |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: distilroberta-proppy |
|
results: [] |
|
--- |
|
|
|
|
|
# distilroberta-proppy |
|
|
|
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the proppy corpus. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1838 |
|
- Acc: 0.9269 |
|
|
|
## Training and evaluation data |
|
|
|
The training data is the [proppy corpus](https://zenodo.org/record/3271522). See [Proppy: Organizing the News |
|
Based on Their Propagandistic Content](https://propaganda.qcri.org/papers/elsarticle-template.pdf) for details. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 12345 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 16 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Acc | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 0.3179 | 1.0 | 732 | 0.2032 | 0.9146 | |
|
| 0.2933 | 2.0 | 1464 | 0.2026 | 0.9206 | |
|
| 0.2938 | 3.0 | 2196 | 0.1849 | 0.9252 | |
|
| 0.3429 | 4.0 | 2928 | 0.1983 | 0.9221 | |
|
| 0.2608 | 5.0 | 3660 | 0.2310 | 0.9106 | |
|
| 0.2562 | 6.0 | 4392 | 0.1826 | 0.9270 | |
|
| 0.2785 | 7.0 | 5124 | 0.1954 | 0.9228 | |
|
| 0.307 | 8.0 | 5856 | 0.2056 | 0.9200 | |
|
| 0.28 | 9.0 | 6588 | 0.1843 | 0.9259 | |
|
| 0.2794 | 10.0 | 7320 | 0.1782 | 0.9299 | |
|
| 0.2868 | 11.0 | 8052 | 0.1907 | 0.9242 | |
|
| 0.2789 | 12.0 | 8784 | 0.2031 | 0.9216 | |
|
| 0.2827 | 13.0 | 9516 | 0.1976 | 0.9229 | |
|
| 0.2795 | 14.0 | 10248 | 0.1866 | 0.9255 | |
|
| 0.2895 | 15.0 | 10980 | 0.1838 | 0.9269 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.2 |
|
- Pytorch 1.7.1 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.3 |
|
|