segformer-b0-finetuned-segments-sidewalk-3

This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5669
  • Mean Iou: 0.3190
  • Mean Accuracy: 0.3821
  • Overall Accuracy: 0.8574
  • Accuracy Unlabeled: nan
  • Accuracy Flat-road: 0.9199
  • Accuracy Flat-sidewalk: 0.9566
  • Accuracy Flat-crosswalk: 0.5855
  • Accuracy Flat-cyclinglane: 0.8187
  • Accuracy Flat-parkingdriveway: 0.4712
  • Accuracy Flat-railtrack: nan
  • Accuracy Flat-curb: 0.5293
  • Accuracy Human-person: 0.7962
  • Accuracy Human-rider: 0.0
  • Accuracy Vehicle-car: 0.9245
  • Accuracy Vehicle-truck: 0.0
  • Accuracy Vehicle-bus: 0.0
  • Accuracy Vehicle-tramtrain: nan
  • Accuracy Vehicle-motorcycle: 0.0
  • Accuracy Vehicle-bicycle: 0.5123
  • Accuracy Vehicle-caravan: 0.0
  • Accuracy Vehicle-cartrailer: 0.0
  • Accuracy Construction-building: 0.8912
  • Accuracy Construction-door: 0.0
  • Accuracy Construction-wall: 0.5405
  • Accuracy Construction-fenceguardrail: 0.3863
  • Accuracy Construction-bridge: 0.0
  • Accuracy Construction-tunnel: nan
  • Accuracy Construction-stairs: 0.0
  • Accuracy Object-pole: 0.4414
  • Accuracy Object-trafficsign: 0.0
  • Accuracy Object-trafficlight: 0.0
  • Accuracy Nature-vegetation: 0.9331
  • Accuracy Nature-terrain: 0.8636
  • Accuracy Sky: 0.9713
  • Accuracy Void-ground: 0.0000
  • Accuracy Void-dynamic: 0.0
  • Accuracy Void-static: 0.3037
  • Accuracy Void-unclear: 0.0
  • Iou Unlabeled: nan
  • Iou Flat-road: 0.7635
  • Iou Flat-sidewalk: 0.8715
  • Iou Flat-crosswalk: 0.5513
  • Iou Flat-cyclinglane: 0.7441
  • Iou Flat-parkingdriveway: 0.3799
  • Iou Flat-railtrack: nan
  • Iou Flat-curb: 0.4143
  • Iou Human-person: 0.5353
  • Iou Human-rider: 0.0
  • Iou Vehicle-car: 0.8080
  • Iou Vehicle-truck: 0.0
  • Iou Vehicle-bus: 0.0
  • Iou Vehicle-tramtrain: nan
  • Iou Vehicle-motorcycle: 0.0
  • Iou Vehicle-bicycle: 0.3478
  • Iou Vehicle-caravan: 0.0
  • Iou Vehicle-cartrailer: 0.0
  • Iou Construction-building: 0.7370
  • Iou Construction-door: 0.0
  • Iou Construction-wall: 0.3749
  • Iou Construction-fenceguardrail: 0.3203
  • Iou Construction-bridge: 0.0
  • Iou Construction-tunnel: nan
  • Iou Construction-stairs: 0.0
  • Iou Object-pole: 0.3284
  • Iou Object-trafficsign: 0.0
  • Iou Object-trafficlight: 0.0
  • Iou Nature-vegetation: 0.8586
  • Iou Nature-terrain: 0.7283
  • Iou Sky: 0.9243
  • Iou Void-ground: 0.0000
  • Iou Void-dynamic: 0.0
  • Iou Void-static: 0.2014
  • Iou Void-unclear: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Flat-road Accuracy Flat-sidewalk Accuracy Flat-crosswalk Accuracy Flat-cyclinglane Accuracy Flat-parkingdriveway Accuracy Flat-railtrack Accuracy Flat-curb Accuracy Human-person Accuracy Human-rider Accuracy Vehicle-car Accuracy Vehicle-truck Accuracy Vehicle-bus Accuracy Vehicle-tramtrain Accuracy Vehicle-motorcycle Accuracy Vehicle-bicycle Accuracy Vehicle-caravan Accuracy Vehicle-cartrailer Accuracy Construction-building Accuracy Construction-door Accuracy Construction-wall Accuracy Construction-fenceguardrail Accuracy Construction-bridge Accuracy Construction-tunnel Accuracy Construction-stairs Accuracy Object-pole Accuracy Object-trafficsign Accuracy Object-trafficlight Accuracy Nature-vegetation Accuracy Nature-terrain Accuracy Sky Accuracy Void-ground Accuracy Void-dynamic Accuracy Void-static Accuracy Void-unclear Iou Unlabeled Iou Flat-road Iou Flat-sidewalk Iou Flat-crosswalk Iou Flat-cyclinglane Iou Flat-parkingdriveway Iou Flat-railtrack Iou Flat-curb Iou Human-person Iou Human-rider Iou Vehicle-car Iou Vehicle-truck Iou Vehicle-bus Iou Vehicle-tramtrain Iou Vehicle-motorcycle Iou Vehicle-bicycle Iou Vehicle-caravan Iou Vehicle-cartrailer Iou Construction-building Iou Construction-door Iou Construction-wall Iou Construction-fenceguardrail Iou Construction-bridge Iou Construction-tunnel Iou Construction-stairs Iou Object-pole Iou Object-trafficsign Iou Object-trafficlight Iou Nature-vegetation Iou Nature-terrain Iou Sky Iou Void-ground Iou Void-dynamic Iou Void-static Iou Void-unclear
1.2409 1.0 200 1.2471 0.1570 0.2044 0.7356 nan 0.8032 0.9526 0.0 0.3067 0.0000 nan 0.0 0.0 0.0 0.9054 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.8352 0.0 0.0007 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.9434 0.6803 0.9090 0.0 0.0 0.0 0.0 nan 0.5173 0.7510 0.0 0.2997 0.0000 nan 0.0 0.0 0.0 0.5787 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.5852 0.0 0.0007 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.7164 0.5939 0.8246 0.0 0.0 0.0 0.0
1.1443 2.0 400 0.9634 0.1732 0.2195 0.7607 nan 0.8231 0.9651 0.0 0.5125 0.0159 nan 0.0005 0.0 0.0 0.9316 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.8419 0.0 0.0476 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.9224 0.8029 0.9413 0.0 0.0 0.0 0.0 nan 0.5515 0.7650 0.0 0.4662 0.0157 nan 0.0005 0.0 0.0 0.6181 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.6102 0.0 0.0440 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.7835 0.6602 0.8541 0.0 0.0 0.0 0.0
0.8805 3.0 600 0.8309 0.1963 0.2429 0.7804 nan 0.8858 0.9438 0.0 0.5258 0.2765 nan 0.2373 0.0 0.0 0.8852 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.9159 0.0 0.1947 0.0000 0.0 nan 0.0 0.0004 0.0 0.0 0.9174 0.8250 0.9226 0.0 0.0 0.0 0.0 nan 0.5450 0.8189 0.0 0.4853 0.2291 nan 0.1953 0.0 0.0 0.7014 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.6219 0.0 0.1442 0.0000 0.0 nan 0.0 0.0004 0.0 0.0 0.7977 0.6821 0.8641 0.0 0.0 0.0 0.0
0.5657 4.0 800 0.7312 0.2177 0.2662 0.8045 nan 0.8296 0.9595 0.0118 0.7076 0.3690 nan 0.3339 0.0056 0.0 0.9077 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.9036 0.0 0.4576 0.0102 0.0 nan 0.0 0.0242 0.0 0.0 0.9308 0.8451 0.9532 0.0 0.0 0.0040 0.0 nan 0.6207 0.8228 0.0118 0.6313 0.2862 nan 0.2661 0.0055 0.0 0.7236 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.6724 0.0 0.2571 0.0102 0.0 nan 0.0 0.0240 0.0 0.0 0.8220 0.7057 0.8862 0.0 0.0 0.0039 0.0
0.7813 5.0 1000 0.6767 0.2476 0.2950 0.8246 nan 0.8929 0.9575 0.3536 0.7434 0.3652 nan 0.3249 0.1722 0.0 0.9367 0.0 0.0 nan 0.0 0.0191 0.0 0.0 0.9078 0.0 0.4430 0.1157 0.0 nan 0.0 0.1126 0.0 0.0 0.9239 0.8638 0.9630 0.0 0.0 0.0504 0.0 nan 0.6867 0.8456 0.3488 0.6502 0.3199 nan 0.2679 0.1656 0.0 0.7052 0.0 0.0 nan 0.0 0.0189 0.0 0.0 0.6895 0.0 0.2999 0.1092 0.0 nan 0.0 0.1055 0.0 0.0 0.8259 0.6999 0.8927 0.0 0.0 0.0447 0.0
0.7435 6.0 1200 0.6344 0.2760 0.3279 0.8357 nan 0.9055 0.9490 0.5276 0.7616 0.4465 nan 0.4423 0.6483 0.0 0.9186 0.0 0.0 nan 0.0 0.0494 0.0 0.0 0.9033 0.0 0.4453 0.1511 0.0 nan 0.0 0.2289 0.0 0.0 0.9545 0.7769 0.9534 0.0 0.0 0.1015 0.0 nan 0.7209 0.8647 0.5022 0.6648 0.3552 nan 0.3400 0.4843 0.0 0.7524 0.0 0.0 nan 0.0 0.0493 0.0 0.0 0.7024 0.0 0.3020 0.1429 0.0 nan 0.0 0.1947 0.0 0.0 0.8107 0.6785 0.9045 0.0 0.0 0.0868 0.0
0.669 7.0 1400 0.6076 0.2955 0.3517 0.8449 nan 0.9070 0.9577 0.6665 0.7372 0.4645 nan 0.4506 0.7302 0.0 0.9348 0.0 0.0 nan 0.0 0.1936 0.0 0.0 0.8990 0.0 0.5097 0.2575 0.0 nan 0.0 0.2668 0.0 0.0 0.9282 0.8178 0.9587 0.0 0.0 0.2242 0.0 nan 0.7469 0.8615 0.5876 0.6676 0.3702 nan 0.3492 0.5076 0.0 0.7583 0.0 0.0 nan 0.0 0.1678 0.0 0.0 0.7182 0.0 0.3413 0.2286 0.0 nan 0.0 0.2275 0.0 0.0 0.8431 0.7139 0.9073 0.0 0.0 0.1654 0.0
0.4628 8.0 1600 0.6011 0.2977 0.3549 0.8429 nan 0.8884 0.9527 0.5578 0.7506 0.4890 nan 0.4638 0.7406 0.0 0.9319 0.0 0.0 nan 0.0 0.3178 0.0 0.0 0.9010 0.0 0.4809 0.3284 0.0 nan 0.0 0.2448 0.0 0.0 0.9241 0.8614 0.9616 0.0 0.0 0.2085 0.0 nan 0.7334 0.8587 0.5336 0.6751 0.3767 nan 0.3613 0.5230 0.0 0.7468 0.0 0.0 nan 0.0 0.2516 0.0 0.0 0.7101 0.0 0.3365 0.2738 0.0 nan 0.0 0.2136 0.0 0.0 0.8427 0.7254 0.9085 0.0 0.0 0.1589 0.0
1.3419 9.0 1800 0.5904 0.3029 0.3709 0.8462 nan 0.9057 0.9510 0.6361 0.7788 0.4788 nan 0.4900 0.8107 0.0 0.9469 0.0 0.0 nan 0.0 0.4336 0.0 0.0 0.8507 0.0 0.5368 0.3238 0.0 nan 0.0 0.2916 0.0 0.0 0.9233 0.8610 0.9637 0.0 0.0 0.3155 0.0 nan 0.7455 0.8668 0.5717 0.7045 0.3669 nan 0.3797 0.4684 0.0 0.7556 0.0 0.0 nan 0.0 0.2745 0.0 0.0 0.7145 0.0 0.3328 0.2865 0.0 nan 0.0 0.2461 0.0 0.0 0.8508 0.7261 0.9126 0.0 0.0 0.1879 0.0
0.5734 10.0 2000 0.5937 0.3046 0.3620 0.8455 nan 0.8903 0.9576 0.4874 0.7802 0.4436 nan 0.5076 0.7526 0.0 0.9252 0.0 0.0 nan 0.0 0.3795 0.0 0.0 0.8933 0.0 0.5108 0.3422 0.0 nan 0.0 0.3250 0.0 0.0 0.9355 0.8361 0.9634 0.0 0.0 0.2901 0.0 nan 0.7358 0.8573 0.4710 0.6988 0.3621 nan 0.3880 0.5318 0.0 0.7827 0.0 0.0 nan 0.0 0.3118 0.0 0.0 0.7178 0.0 0.3584 0.2906 0.0 nan 0.0 0.2654 0.0 0.0 0.8469 0.7203 0.9165 0.0 0.0 0.1862 0.0
0.3721 11.0 2200 0.5782 0.3079 0.3675 0.8503 nan 0.9192 0.9460 0.5240 0.8234 0.4822 nan 0.5023 0.7689 0.0 0.8965 0.0 0.0 nan 0.0 0.4271 0.0 0.0 0.9199 0.0 0.5107 0.3373 0.0 nan 0.0 0.4079 0.0 0.0 0.9468 0.8152 0.9624 0.0 0.0 0.2037 0.0 nan 0.7498 0.8668 0.5037 0.7028 0.3740 nan 0.3838 0.5157 0.0 0.7946 0.0 0.0 nan 0.0 0.3237 0.0 0.0 0.7340 0.0 0.3586 0.2842 0.0 nan 0.0 0.3043 0.0 0.0 0.8469 0.7219 0.9174 0.0 0.0 0.1618 0.0
0.5698 12.0 2400 0.5601 0.3147 0.3796 0.8547 nan 0.9163 0.9502 0.6118 0.8102 0.5160 nan 0.4905 0.7891 0.0 0.9196 0.0 0.0 nan 0.0 0.4718 0.0 0.0 0.8898 0.0 0.5471 0.4070 0.0 nan 0.0 0.4158 0.0 0.0 0.9320 0.8523 0.9700 0.0 0.0 0.2787 0.0 nan 0.7765 0.8684 0.5737 0.7307 0.3860 nan 0.3917 0.5271 0.0 0.7968 0.0 0.0 nan 0.0 0.2862 0.0 0.0 0.7351 0.0 0.3521 0.3301 0.0 nan 0.0 0.3084 0.0 0.0 0.8525 0.7310 0.9171 0.0 0.0 0.1921 0.0
0.4268 13.0 2600 0.5706 0.3144 0.3758 0.8546 nan 0.9149 0.9584 0.5832 0.8127 0.4595 nan 0.5052 0.7785 0.0 0.9385 0.0 0.0 nan 0.0 0.4538 0.0 0.0 0.8974 0.0 0.5469 0.3876 0.0 nan 0.0 0.3971 0.0 0.0 0.9269 0.8398 0.9644 0.0 0.0 0.2853 0.0 nan 0.7632 0.8670 0.5583 0.7345 0.3711 nan 0.3931 0.5330 0.0 0.7866 0.0 0.0 nan 0.0 0.3082 0.0 0.0 0.7333 0.0 0.3694 0.3199 0.0 nan 0.0 0.3094 0.0 0.0 0.8565 0.7309 0.9212 0.0 0.0 0.1913 0.0
0.3612 14.0 2800 0.5615 0.3182 0.3797 0.8587 nan 0.9143 0.9554 0.6527 0.8256 0.4717 nan 0.5467 0.7521 0.0 0.9229 0.0 0.0 nan 0.0 0.4951 0.0 0.0 0.9226 0.0 0.5236 0.3953 0.0 nan 0.0 0.4144 0.0 0.0 0.9329 0.8347 0.9637 0.0 0.0 0.2473 0.0 nan 0.7803 0.8714 0.5854 0.7509 0.3843 nan 0.4085 0.5363 0.0 0.7994 0.0 0.0 nan 0.0 0.3118 0.0 0.0 0.7381 0.0 0.3688 0.3250 0.0 nan 0.0 0.3138 0.0 0.0 0.8547 0.7242 0.9233 0.0 0.0 0.1865 0.0
0.2714 15.0 3000 0.5687 0.3165 0.3819 0.8557 nan 0.9102 0.9546 0.5390 0.8252 0.4823 nan 0.5408 0.8170 0.0 0.9223 0.0 0.0 nan 0.0 0.5004 0.0 0.0 0.8929 0.0 0.5402 0.4228 0.0 nan 0.0 0.4218 0.0 0.0 0.9324 0.8585 0.9674 0.0 0.0 0.3121 0.0 nan 0.7610 0.8703 0.5177 0.7369 0.3866 nan 0.4110 0.5213 0.0 0.8051 0.0 0.0 nan 0.0 0.3223 0.0 0.0 0.7368 0.0 0.3795 0.3303 0.0 nan 0.0 0.3181 0.0 0.0 0.8558 0.7279 0.9245 0.0 0.0 0.2057 0.0
0.3566 16.0 3200 0.5746 0.3154 0.3831 0.8543 nan 0.9156 0.9537 0.5807 0.8263 0.4642 nan 0.5228 0.8130 0.0 0.9300 0.0 0.0 nan 0.0 0.5625 0.0 0.0 0.8697 0.0 0.5473 0.3708 0.0 nan 0.0 0.4250 0.0 0.0 0.9320 0.8671 0.9687 0.0 0.0 0.3279 0.0 nan 0.7622 0.8696 0.5476 0.7333 0.3773 nan 0.4062 0.5234 0.0 0.8021 0.0 0.0 nan 0.0 0.3295 0.0 0.0 0.7271 0.0 0.3621 0.3111 0.0 nan 0.0 0.3157 0.0 0.0 0.8569 0.7294 0.9246 0.0 0.0 0.1997 0.0
0.3486 17.0 3400 0.5716 0.3168 0.3810 0.8550 nan 0.9087 0.9592 0.5998 0.7778 0.4799 nan 0.5562 0.7959 0.0 0.9295 0.0 0.0 nan 0.0 0.4951 0.0 0.0 0.8892 0.0 0.5531 0.3860 0.0 nan 0.0 0.4274 0.0 0.0 0.9295 0.8539 0.9663 0.0 0.0 0.3037 0.0 nan 0.7539 0.8708 0.5570 0.7185 0.3903 nan 0.4183 0.5347 0.0 0.7991 0.0 0.0 nan 0.0 0.3381 0.0 0.0 0.7322 0.0 0.3614 0.3128 0.0 nan 0.0 0.3210 0.0 0.0 0.8602 0.7322 0.9260 0.0 0.0 0.1958 0.0
0.2541 18.0 3600 0.5641 0.3185 0.3816 0.8573 nan 0.9128 0.9560 0.6054 0.8210 0.4610 nan 0.5325 0.7977 0.0 0.9235 0.0 0.0 nan 0.0 0.5042 0.0 0.0 0.9042 0.0 0.5403 0.3783 0.0 nan 0.0 0.4368 0.0 0.0 0.9330 0.8523 0.9728 0.0 0.0 0.2982 0.0 nan 0.7718 0.8707 0.5635 0.7389 0.3730 nan 0.4092 0.5344 0.0 0.8080 0.0 0.0 nan 0.0 0.3504 0.0 0.0 0.7379 0.0 0.3729 0.3107 0.0 nan 0.0 0.3226 0.0 0.0 0.8587 0.7271 0.9226 0.0 0.0 0.2016 0.0
0.3204 19.0 3800 0.5781 0.3170 0.3798 0.8554 nan 0.9236 0.9609 0.5748 0.7706 0.4581 nan 0.5274 0.7996 0.0 0.9291 0.0 0.0 nan 0.0 0.5223 0.0 0.0 0.9019 0.0 0.5425 0.3743 0.0 nan 0.0 0.4318 0.0 0.0 0.9265 0.8595 0.9685 0.0 0.0 0.3016 0.0 nan 0.7477 0.8692 0.5451 0.7127 0.3767 nan 0.4137 0.5304 0.0 0.8061 0.0 0.0 nan 0.0 0.3493 0.0 0.0 0.7376 0.0 0.3776 0.3140 0.0 nan 0.0 0.3249 0.0 0.0 0.8609 0.7330 0.9252 0.0 0.0 0.2027 0.0
0.3648 20.0 4000 0.5669 0.3190 0.3821 0.8574 nan 0.9199 0.9566 0.5855 0.8187 0.4712 nan 0.5293 0.7962 0.0 0.9245 0.0 0.0 nan 0.0 0.5123 0.0 0.0 0.8912 0.0 0.5405 0.3863 0.0 nan 0.0 0.4414 0.0 0.0 0.9331 0.8636 0.9713 0.0000 0.0 0.3037 0.0 nan 0.7635 0.8715 0.5513 0.7441 0.3799 nan 0.4143 0.5353 0.0 0.8080 0.0 0.0 nan 0.0 0.3478 0.0 0.0 0.7370 0.0 0.3749 0.3203 0.0 nan 0.0 0.3284 0.0 0.0 0.8586 0.7283 0.9243 0.0000 0.0 0.2014 0.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
18
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vanniew/segformer-b0-finetuned-segments-sidewalk-3

Base model

nvidia/mit-b0
Finetuned
(345)
this model