layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8174
  • Answer: {'precision': 0.7233333333333334, 'recall': 0.8046971569839307, 'f1': 0.7618490345231129, 'number': 809}
  • Header: {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119}
  • Question: {'precision': 0.7904085257548845, 'recall': 0.8356807511737089, 'f1': 0.8124144226380648, 'number': 1065}
  • Overall Precision: 0.7351
  • Overall Recall: 0.7978
  • Overall F1: 0.7652
  • Overall Accuracy: 0.8019

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3435 1.0 10 1.1455 {'precision': 0.29554655870445345, 'recall': 0.27070457354758964, 'f1': 0.2825806451612903, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.43828125, 'recall': 0.5267605633802817, 'f1': 0.47846481876332625, 'number': 1065} 0.3858 0.3914 0.3885 0.6180
0.9706 2.0 20 0.8933 {'precision': 0.5545454545454546, 'recall': 0.6786155747836835, 'f1': 0.6103390772651472, 'number': 809} {'precision': 0.08695652173913043, 'recall': 0.03361344537815126, 'f1': 0.048484848484848485, 'number': 119} {'precision': 0.6115916955017301, 'recall': 0.6638497652582159, 'f1': 0.6366501575866726, 'number': 1065} 0.5748 0.6322 0.6022 0.7308
0.7426 3.0 30 0.7478 {'precision': 0.6294058408862034, 'recall': 0.7725587144622992, 'f1': 0.6936736958934517, 'number': 809} {'precision': 0.1891891891891892, 'recall': 0.11764705882352941, 'f1': 0.1450777202072539, 'number': 119} {'precision': 0.6858333333333333, 'recall': 0.7727699530516432, 'f1': 0.726710816777042, 'number': 1065} 0.6449 0.7336 0.6864 0.7770
0.6123 4.0 40 0.6950 {'precision': 0.6286266924564797, 'recall': 0.8034610630407911, 'f1': 0.705371676614216, 'number': 809} {'precision': 0.19387755102040816, 'recall': 0.15966386554621848, 'f1': 0.17511520737327188, 'number': 119} {'precision': 0.6943268416596104, 'recall': 0.7699530516431925, 'f1': 0.730186999109528, 'number': 1065} 0.6438 0.7471 0.6916 0.7886
0.5267 5.0 50 0.6804 {'precision': 0.6574172892209178, 'recall': 0.761433868974042, 'f1': 0.7056128293241695, 'number': 809} {'precision': 0.21818181818181817, 'recall': 0.20168067226890757, 'f1': 0.2096069868995633, 'number': 119} {'precision': 0.7246496290189612, 'recall': 0.8253521126760563, 'f1': 0.771729587357331, 'number': 1065} 0.6721 0.7622 0.7143 0.8013
0.4587 6.0 60 0.6701 {'precision': 0.670490093847758, 'recall': 0.7948084054388134, 'f1': 0.7273755656108597, 'number': 809} {'precision': 0.2108843537414966, 'recall': 0.2605042016806723, 'f1': 0.2330827067669173, 'number': 119} {'precision': 0.7309602649006622, 'recall': 0.8291079812206573, 'f1': 0.7769467663880335, 'number': 1065} 0.6729 0.7812 0.7230 0.7977
0.3981 7.0 70 0.6637 {'precision': 0.7029063509149623, 'recall': 0.8071693448702101, 'f1': 0.7514384349827388, 'number': 809} {'precision': 0.2698412698412698, 'recall': 0.2857142857142857, 'f1': 0.27755102040816326, 'number': 119} {'precision': 0.7621483375959079, 'recall': 0.8394366197183099, 'f1': 0.7989276139410187, 'number': 1065} 0.7096 0.7933 0.7491 0.8062
0.3608 8.0 80 0.6778 {'precision': 0.7083333333333334, 'recall': 0.7985166872682324, 'f1': 0.7507263219058687, 'number': 809} {'precision': 0.25874125874125875, 'recall': 0.31092436974789917, 'f1': 0.2824427480916031, 'number': 119} {'precision': 0.7633851468048359, 'recall': 0.8300469483568075, 'f1': 0.7953216374269007, 'number': 1065} 0.7081 0.7863 0.7451 0.8003
0.311 9.0 90 0.6931 {'precision': 0.6991247264770241, 'recall': 0.7898640296662547, 'f1': 0.7417295414973882, 'number': 809} {'precision': 0.2835820895522388, 'recall': 0.31932773109243695, 'f1': 0.30039525691699603, 'number': 119} {'precision': 0.7606244579358196, 'recall': 0.8234741784037559, 'f1': 0.7908025247971145, 'number': 1065} 0.7060 0.7797 0.7411 0.8055
0.276 10.0 100 0.7144 {'precision': 0.7298787210584344, 'recall': 0.8182941903584673, 'f1': 0.7715617715617716, 'number': 809} {'precision': 0.3103448275862069, 'recall': 0.37815126050420167, 'f1': 0.34090909090909094, 'number': 119} {'precision': 0.7814159292035399, 'recall': 0.8291079812206573, 'f1': 0.8045558086560365, 'number': 1065} 0.7287 0.7978 0.7617 0.8062
0.2393 11.0 110 0.7342 {'precision': 0.7155555555555555, 'recall': 0.796044499381953, 'f1': 0.7536571094207138, 'number': 809} {'precision': 0.296551724137931, 'recall': 0.36134453781512604, 'f1': 0.32575757575757575, 'number': 119} {'precision': 0.774869109947644, 'recall': 0.8338028169014085, 'f1': 0.8032564450474899, 'number': 1065} 0.7188 0.7903 0.7529 0.8042
0.2227 12.0 120 0.7539 {'precision': 0.7054945054945055, 'recall': 0.7935723114956736, 'f1': 0.7469458987783596, 'number': 809} {'precision': 0.33884297520661155, 'recall': 0.3445378151260504, 'f1': 0.3416666666666667, 'number': 119} {'precision': 0.7686440677966102, 'recall': 0.8516431924882629, 'f1': 0.8080178173719377, 'number': 1065} 0.7191 0.7978 0.7564 0.8006
0.2119 13.0 130 0.7774 {'precision': 0.7263736263736263, 'recall': 0.8170580964153276, 'f1': 0.7690517742873763, 'number': 809} {'precision': 0.28125, 'recall': 0.37815126050420167, 'f1': 0.3225806451612903, 'number': 119} {'precision': 0.7714033539276258, 'recall': 0.8206572769953052, 'f1': 0.7952684258416743, 'number': 1065} 0.7172 0.7928 0.7531 0.7952
0.1882 14.0 140 0.7688 {'precision': 0.7270668176670442, 'recall': 0.7935723114956736, 'f1': 0.7588652482269503, 'number': 809} {'precision': 0.3384615384615385, 'recall': 0.3697478991596639, 'f1': 0.35341365461847385, 'number': 119} {'precision': 0.7883597883597884, 'recall': 0.8394366197183099, 'f1': 0.8130968622100955, 'number': 1065} 0.7359 0.7928 0.7633 0.8024
0.1767 15.0 150 0.7717 {'precision': 0.7244785949506037, 'recall': 0.8158220024721878, 'f1': 0.7674418604651163, 'number': 809} {'precision': 0.3548387096774194, 'recall': 0.3697478991596639, 'f1': 0.36213991769547327, 'number': 119} {'precision': 0.789612676056338, 'recall': 0.8422535211267606, 'f1': 0.8150840527033166, 'number': 1065} 0.7374 0.8033 0.7690 0.8020
0.1703 16.0 160 0.7943 {'precision': 0.7231638418079096, 'recall': 0.7911001236093943, 'f1': 0.755608028335301, 'number': 809} {'precision': 0.36231884057971014, 'recall': 0.42016806722689076, 'f1': 0.38910505836575876, 'number': 119} {'precision': 0.79185119574845, 'recall': 0.8394366197183099, 'f1': 0.8149498632634458, 'number': 1065} 0.7361 0.7948 0.7643 0.8017
0.1643 17.0 170 0.8087 {'precision': 0.7207207207207207, 'recall': 0.7911001236093943, 'f1': 0.7542722451384797, 'number': 809} {'precision': 0.33098591549295775, 'recall': 0.3949579831932773, 'f1': 0.3601532567049809, 'number': 119} {'precision': 0.7932263814616756, 'recall': 0.8356807511737089, 'f1': 0.8139003200731596, 'number': 1065} 0.7328 0.7913 0.7609 0.7990
0.1443 18.0 180 0.8170 {'precision': 0.7230419977298524, 'recall': 0.7873918417799752, 'f1': 0.7538461538461538, 'number': 809} {'precision': 0.36231884057971014, 'recall': 0.42016806722689076, 'f1': 0.38910505836575876, 'number': 119} {'precision': 0.7898936170212766, 'recall': 0.8366197183098592, 'f1': 0.8125854993160054, 'number': 1065} 0.7350 0.7918 0.7623 0.7994
0.148 19.0 190 0.8169 {'precision': 0.7245240761478163, 'recall': 0.799752781211372, 'f1': 0.7602820211515863, 'number': 809} {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119} {'precision': 0.792149866190901, 'recall': 0.8338028169014085, 'f1': 0.8124428179322964, 'number': 1065} 0.7364 0.7948 0.7645 0.8015
0.1441 20.0 200 0.8174 {'precision': 0.7233333333333334, 'recall': 0.8046971569839307, 'f1': 0.7618490345231129, 'number': 809} {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119} {'precision': 0.7904085257548845, 'recall': 0.8356807511737089, 'f1': 0.8124144226380648, 'number': 1065} 0.7351 0.7978 0.7652 0.8019

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vatipham/layoutlm-funsd

Finetuned
(145)
this model