CosAE Convolutional Harmonic Autoencoder

This is a pretrained Convolutional Harmonic Autoencoder (CosAE) model. It encodes images into amplitude/phase harmonics and reconstructs RGB images.

Usage

from transformers import AutoModel

# Load the model with remote code trust
model = AutoModel.from_pretrained(
    "vedant-jumle/cosae",
    trust_remote_code=True,
)
model.eval()

# Example input: tensor of shape [B, 9, H, W] (RGB + FFT) or [B,3,H,W]
import torch
x = torch.randn(1, 9, 256, 256)
with torch.no_grad():
    recon = model(x)

Model Details

  • Architecture: Convolutional encoder (ResBlocks + optional attention), Harmonic Construction Module, upsampling decoder
  • Input channels: 9 (3 RGB + 6 FFT) or 3
  • Image size: 256ร—256 (configurable)

References

License

This model is released under the MIT License. See the repository LICENSE for details.

Downloads last month
4
Safetensors
Model size
18.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support