Edit model card

SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 4096-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: None tokens
  • Output Dimensionality: 4096 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

LLM2VecSentenceTransformer(
  (0): LLM2VecWrapper(
    (llm2vec_model): LLM2Vec(
      (model): LlamaBiModel(
        (embed_tokens): Embedding(128256, 4096)
        (layers): ModuleList(
          (0-31): 32 x ModifiedLlamaDecoderLayer(
            (self_attn): ModifiedLlamaSdpaAttention(
              (q_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
              (k_proj): Linear8bitLt(in_features=4096, out_features=1024, bias=False)
              (v_proj): Linear8bitLt(in_features=4096, out_features=1024, bias=False)
              (o_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
              (rotary_emb): LlamaRotaryEmbedding()
            )
            (mlp): LlamaMLP(
              (gate_proj): Linear8bitLt(in_features=4096, out_features=14336, bias=False)
              (up_proj): Linear8bitLt(in_features=4096, out_features=14336, bias=False)
              (down_proj): Linear8bitLt(in_features=14336, out_features=4096, bias=False)
              (act_fn): SiLU()
            )
            (input_layernorm): LlamaRMSNorm()
            (post_attention_layernorm): LlamaRMSNorm()
          )
        )
        (norm): LlamaRMSNorm()
        (rotary_emb): LlamaRotaryEmbedding()
      )
    )
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 馃 Hub
model = SentenceTransformer("velvetScar/llm2vec-llama-3.1-8B")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.1
  • Transformers: 4.43.1
  • PyTorch: 2.4.0
  • Accelerate: 0.33.0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Downloads last month
11
Safetensors
Model size
7.51B params
Tensor type
F32
BF16
I8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.