Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: ./data/openhermes2_5_10k.jsonl
    type: sharegpt
    conversation: chatml
dataset_prepared_path: 
val_set_size: 0.15
output_dir: ./lora-output-dir
hub_model_id: venetis/llama3-8b-hermes-sandals-sample-10k

data_seed: 117
seed: 117

chat_template: chatml
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:


sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: llama-3-8b-hermes-sandals-sample-10k
wandb_entity: venetispall

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-4

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:


warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
#UPDATES mk2 - added special tokens
special_tokens:
  eos_token: "<|im_end|>"
  pad_token: "<|end_of_text|>"
tokens:
  - "<|im_start|>"
  - "<|im_end|>"
lora_modules_to_save:
  - embed_tokens
  - lm_head

llama3-8b-hermes-sandals-sample-10k

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 117
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.9567 0.0102 1 1.0036
0.7583 0.2545 25 0.8184
0.8226 0.5089 50 0.8238
0.7471 0.7634 75 0.8094
0.7339 1.0178 100 0.7954
0.4737 1.2494 125 0.8393
0.4723 1.5038 150 0.8395
0.5529 1.7583 175 0.8327
0.4288 2.0127 200 0.8277
0.2476 2.2468 225 0.8617
0.2566 2.5013 250 0.8676
0.2787 2.7557 275 0.8654
0.3477 3.0102 300 0.8648
0.1912 3.2392 325 0.8909
0.1868 3.4936 350 0.8912
0.1864 3.7481 375 0.8913

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for venetis/llama3-8b-hermes-sandals-sample-10k

Adapter
(541)
this model