vit-base-patch16-224_album_vitVMMRdb_make_model_album_pred

This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4670
  • Accuracy: 0.8781
  • Precision: 0.8768
  • Recall: 0.8781
  • F1: 0.8758

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
3.5529 1.0 839 3.3687 0.3096 0.2809 0.3096 0.2246
1.7855 2.0 1678 1.6042 0.6378 0.6187 0.6378 0.5996
1.1054 3.0 2517 1.0105 0.7556 0.7512 0.7556 0.7385
0.8179 4.0 3356 0.7794 0.8033 0.8020 0.8033 0.7934
0.6057 5.0 4195 0.6479 0.8294 0.8274 0.8294 0.8212
0.4709 6.0 5034 0.5817 0.8478 0.8477 0.8478 0.8428
0.3962 7.0 5873 0.5333 0.8571 0.8570 0.8571 0.8527
0.346 8.0 6712 0.5073 0.8638 0.8647 0.8638 0.8615
0.2772 9.0 7551 0.4881 0.8681 0.8679 0.8681 0.8656
0.2136 10.0 8390 0.4777 0.8719 0.8718 0.8719 0.8689
0.1937 11.0 9229 0.4737 0.8734 0.8731 0.8734 0.8703
0.1754 12.0 10068 0.4604 0.8758 0.8750 0.8758 0.8733
0.1111 13.0 10907 0.4561 0.8790 0.8782 0.8790 0.8768
0.1128 14.0 11746 0.4519 0.8808 0.8799 0.8808 0.8787
0.1018 15.0 12585 0.4497 0.8813 0.8805 0.8813 0.8794

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support