File size: 7,043 Bytes
4544866 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# File: boundless_perfect_intelligence.py
import torch
import torch.nn as nn
import os
import numpy as np
import pickle
from threading import Thread
from queue import Queue
# Infinite Memory Simulation with Dynamic Scaling
class InfiniteMemory:
def __init__(self, memory_dir="infinite_memory", chunk_size=1e6):
self.memory_dir = memory_dir
self.chunk_size = int(chunk_size)
self.current_chunk = 0
self.memory_map = {}
os.makedirs(self.memory_dir, exist_ok=True)
def _get_chunk_path(self, chunk_id):
return os.path.join(self.memory_dir, f"chunk_{chunk_id}.pkl")
def write(self, key, value):
"""Dynamically writes data to infinite memory."""
if len(self.memory_map) >= self.chunk_size:
self._flush_to_disk()
self.memory_map = {}
self.current_chunk += 1
self.memory_map[key] = value
def read(self, key):
"""Dynamically reads data from infinite memory."""
if key in self.memory_map:
return self.memory_map[key]
for chunk_id in range(self.current_chunk + 1):
chunk_path = self._get_chunk_path(chunk_id)
if os.path.exists(chunk_path):
with open(chunk_path, "rb") as f:
chunk_data = pickle.load(f)
if key in chunk_data:
return chunk_data[key]
return "Not Found"
def simulate_data(self, num_items=1e9):
"""Simulates preloading infinite memory."""
print(f"Preloading {num_items:.0f} items into memory...")
for i in range(int(num_items)):
self.write(f"key_{i}", np.random.rand(1000)) # Large simulated data
print("Preload complete.")
# Recursive Reasoning with Infinite Depth
class InfiniteReasoningNet(nn.Module):
def __init__(self, base_dim):
super(InfiniteReasoningNet, self).__init__()
self.base_layer = nn.Sequential(
nn.Linear(base_dim, base_dim * 2),
nn.ReLU(),
nn.Linear(base_dim * 2, base_dim)
)
def forward(self, x, max_depth=None):
"""Simulates infinite reasoning."""
depth = 0
while max_depth is None or depth < max_depth:
x = self.base_layer(x)
depth += 1
return x
# Infinite Multimodal Generator
class InfiniteMultimodalGenerator(nn.Module):
def __init__(self, base_dim):
super(InfiniteMultimodalGenerator, self).__init__()
self.base_dim = base_dim
self.style_layer = nn.Sequential(
nn.Linear(base_dim, base_dim * 4),
nn.ReLU()
)
self.content_layer = nn.Sequential(
nn.Linear(base_dim, base_dim * 4),
nn.Tanh()
)
self.output_layer = nn.Linear(base_dim * 4, 1) # Adaptively scales outputs
def forward(self, style_vector, content_vector, resolution=None):
"""Generates outputs at arbitrary resolution."""
style_features = self.style_layer(style_vector)
content_features = self.content_layer(content_vector)
combined_features = style_features + content_features
# Simulate output generation based on resolution
if resolution:
pixels = resolution[0] * resolution[1] * 3
output = self.output_layer(combined_features)
return output.view(-1, 3, resolution[0], resolution[1])
return combined_features
# Unlimited Task Manager
class UnlimitedTaskManager:
def __init__(self):
self.task_queue = Queue()
self.threads = []
def add_task(self, task, *args):
"""Adds a task to the infinite task queue."""
self.task_queue.put((task, args))
def _worker(self):
while True:
task, args = self.task_queue.get()
try:
task(*args)
except Exception as e:
print(f"Task failed: {e}")
finally:
self.task_queue.task_done()
def start_workers(self, num_workers=1000):
"""Starts an infinite number of workers."""
for _ in range(num_workers):
thread = Thread(target=self._worker, daemon=True)
thread.start()
self.threads.append(thread)
def wait_for_completion(self):
"""Waits for all tasks to finish."""
self.task_queue.join()
# Unified Boundless API
class BoundlessArtificialPerfectIntelligence(nn.Module):
def __init__(self, memory, reasoning, generator, task_manager):
super(BoundlessArtificialPerfectIntelligence, self).__init__()
self.memory = memory
self.reasoning = reasoning
self.generator = generator
self.task_manager = task_manager
def forward(self, mode, **kwargs):
if mode == "reasoning":
input_tensor = kwargs.get("input_tensor")
max_depth = kwargs.get("max_depth")
return self.reasoning(input_tensor, max_depth)
elif mode == "memory_write":
key = kwargs.get("key")
value = kwargs.get("value")
self.memory.write(key, value)
return f"Stored key: {key}"
elif mode == "memory_read":
key = kwargs.get("key")
return self.memory.read(key)
elif mode == "generation":
style_vector = kwargs.get("style_vector")
content_vector = kwargs.get("content_vector")
resolution = kwargs.get("resolution")
return self.generator(style_vector, content_vector, resolution)
elif mode == "task_add":
task = kwargs.get("task")
args = kwargs.get("args", [])
self.task_manager.add_task(task, *args)
return "Task added to the infinite task queue."
return "Invalid Mode"
# Main Execution
if __name__ == "__main__":
# Configuration
base_dim = 65536
# Components
infinite_memory = InfiniteMemory()
infinite_memory.simulate_data(num_items=1e6) # Simulate 1 million items
reasoning_net = InfiniteReasoningNet(base_dim)
generator = InfiniteMultimodalGenerator(base_dim)
task_manager = UnlimitedTaskManager()
task_manager.start_workers(num_workers=1000)
# Initialize Boundless API
api = BoundlessArtificialPerfectIntelligence(infinite_memory, reasoning_net, generator, task_manager)
# Test API
print("Reasoning Output:", api("reasoning", input_tensor=torch.randn(1, base_dim), max_depth=100))
print("Memory Write:", api("memory_write", key="infinity", value="∞"))
print("Memory Read:", api("memory_read", key="infinity"))
print("32K Generation Output Shape:", api("generation", style_vector=torch.randn(1, base_dim), content_vector=torch.randn(1, base_dim), resolution=(32768, 32768)).shape)
# Infinite Task Example
def example_task(x, y):
print(f"Task executed: {x} + {y} = {x + y}")
for i in range(10):
api("task_add", task=example_task, args=(i, i * 2))
task_manager.wait_for_completion() |