File size: 7,043 Bytes
4544866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# File: boundless_perfect_intelligence.py

import torch
import torch.nn as nn
import os
import numpy as np
import pickle
from threading import Thread
from queue import Queue

# Infinite Memory Simulation with Dynamic Scaling
class InfiniteMemory:
    def __init__(self, memory_dir="infinite_memory", chunk_size=1e6):
        self.memory_dir = memory_dir
        self.chunk_size = int(chunk_size)
        self.current_chunk = 0
        self.memory_map = {}

        os.makedirs(self.memory_dir, exist_ok=True)

    def _get_chunk_path(self, chunk_id):
        return os.path.join(self.memory_dir, f"chunk_{chunk_id}.pkl")

    def write(self, key, value):
        """Dynamically writes data to infinite memory."""
        if len(self.memory_map) >= self.chunk_size:
            self._flush_to_disk()
            self.memory_map = {}
            self.current_chunk += 1
        self.memory_map[key] = value

    def read(self, key):
        """Dynamically reads data from infinite memory."""
        if key in self.memory_map:
            return self.memory_map[key]
        for chunk_id in range(self.current_chunk + 1):
            chunk_path = self._get_chunk_path(chunk_id)
            if os.path.exists(chunk_path):
                with open(chunk_path, "rb") as f:
                    chunk_data = pickle.load(f)
                    if key in chunk_data:
                        return chunk_data[key]
        return "Not Found"

    def simulate_data(self, num_items=1e9):
        """Simulates preloading infinite memory."""
        print(f"Preloading {num_items:.0f} items into memory...")
        for i in range(int(num_items)):
            self.write(f"key_{i}", np.random.rand(1000))  # Large simulated data
        print("Preload complete.")

# Recursive Reasoning with Infinite Depth
class InfiniteReasoningNet(nn.Module):
    def __init__(self, base_dim):
        super(InfiniteReasoningNet, self).__init__()
        self.base_layer = nn.Sequential(
            nn.Linear(base_dim, base_dim * 2),
            nn.ReLU(),
            nn.Linear(base_dim * 2, base_dim)
        )

    def forward(self, x, max_depth=None):
        """Simulates infinite reasoning."""
        depth = 0
        while max_depth is None or depth < max_depth:
            x = self.base_layer(x)
            depth += 1
        return x

# Infinite Multimodal Generator
class InfiniteMultimodalGenerator(nn.Module):
    def __init__(self, base_dim):
        super(InfiniteMultimodalGenerator, self).__init__()
        self.base_dim = base_dim
        self.style_layer = nn.Sequential(
            nn.Linear(base_dim, base_dim * 4),
            nn.ReLU()
        )
        self.content_layer = nn.Sequential(
            nn.Linear(base_dim, base_dim * 4),
            nn.Tanh()
        )
        self.output_layer = nn.Linear(base_dim * 4, 1)  # Adaptively scales outputs

    def forward(self, style_vector, content_vector, resolution=None):
        """Generates outputs at arbitrary resolution."""
        style_features = self.style_layer(style_vector)
        content_features = self.content_layer(content_vector)
        combined_features = style_features + content_features

        # Simulate output generation based on resolution
        if resolution:
            pixels = resolution[0] * resolution[1] * 3
            output = self.output_layer(combined_features)
            return output.view(-1, 3, resolution[0], resolution[1])
        return combined_features

# Unlimited Task Manager
class UnlimitedTaskManager:
    def __init__(self):
        self.task_queue = Queue()
        self.threads = []

    def add_task(self, task, *args):
        """Adds a task to the infinite task queue."""
        self.task_queue.put((task, args))

    def _worker(self):
        while True:
            task, args = self.task_queue.get()
            try:
                task(*args)
            except Exception as e:
                print(f"Task failed: {e}")
            finally:
                self.task_queue.task_done()

    def start_workers(self, num_workers=1000):
        """Starts an infinite number of workers."""
        for _ in range(num_workers):
            thread = Thread(target=self._worker, daemon=True)
            thread.start()
            self.threads.append(thread)

    def wait_for_completion(self):
        """Waits for all tasks to finish."""
        self.task_queue.join()

# Unified Boundless API
class BoundlessArtificialPerfectIntelligence(nn.Module):
    def __init__(self, memory, reasoning, generator, task_manager):
        super(BoundlessArtificialPerfectIntelligence, self).__init__()
        self.memory = memory
        self.reasoning = reasoning
        self.generator = generator
        self.task_manager = task_manager

    def forward(self, mode, **kwargs):
        if mode == "reasoning":
            input_tensor = kwargs.get("input_tensor")
            max_depth = kwargs.get("max_depth")
            return self.reasoning(input_tensor, max_depth)

        elif mode == "memory_write":
            key = kwargs.get("key")
            value = kwargs.get("value")
            self.memory.write(key, value)
            return f"Stored key: {key}"

        elif mode == "memory_read":
            key = kwargs.get("key")
            return self.memory.read(key)

        elif mode == "generation":
            style_vector = kwargs.get("style_vector")
            content_vector = kwargs.get("content_vector")
            resolution = kwargs.get("resolution")
            return self.generator(style_vector, content_vector, resolution)

        elif mode == "task_add":
            task = kwargs.get("task")
            args = kwargs.get("args", [])
            self.task_manager.add_task(task, *args)
            return "Task added to the infinite task queue."

        return "Invalid Mode"

# Main Execution
if __name__ == "__main__":
    # Configuration
    base_dim = 65536

    # Components
    infinite_memory = InfiniteMemory()
    infinite_memory.simulate_data(num_items=1e6)  # Simulate 1 million items

    reasoning_net = InfiniteReasoningNet(base_dim)
    generator = InfiniteMultimodalGenerator(base_dim)
    task_manager = UnlimitedTaskManager()
    task_manager.start_workers(num_workers=1000)

    # Initialize Boundless API
    api = BoundlessArtificialPerfectIntelligence(infinite_memory, reasoning_net, generator, task_manager)

    # Test API
    print("Reasoning Output:", api("reasoning", input_tensor=torch.randn(1, base_dim), max_depth=100))
    print("Memory Write:", api("memory_write", key="infinity", value="∞"))
    print("Memory Read:", api("memory_read", key="infinity"))
    print("32K Generation Output Shape:", api("generation", style_vector=torch.randn(1, base_dim), content_vector=torch.randn(1, base_dim), resolution=(32768, 32768)).shape)

    # Infinite Task Example
    def example_task(x, y):
        print(f"Task executed: {x} + {y} = {x + y}")

    for i in range(10):
        api("task_add", task=example_task, args=(i, i * 2))
    task_manager.wait_for_completion()