versae's picture
update model card README.md
6645cd2
|
raw
history blame
1.99 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - ncc_s
metrics:
  - wer
model-index:
  - name: whisper-large-nob-ncc-s
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ncc_s
          type: ncc_s
          config: 'no'
          split: validation
          args: 'no'
        metrics:
          - name: Wer
            type: wer
            value: 12.51522533495737

whisper-large-nob-ncc-s

This model is a fine-tuned version of openai/whisper-large-v2 on the ncc_s dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2776
  • Wer: 12.5152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 12
  • eval_batch_size: 6
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6892 0.2 1000 0.3177 15.1035
0.6782 0.4 2000 0.3033 13.4592
0.6317 0.6 3000 0.2909 13.7637
0.5609 0.8 4000 0.2803 12.6675
0.5726 1.0 5000 0.2776 12.5152

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.11.0