language: | |
- en | |
- is | |
- multilingual | |
license: agpl-3.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- conll2003 | |
metrics: | |
- precision | |
- recall | |
- f1 | |
- accuracy | |
model-index: | |
- name: XLMR-ENIS-finetuned-ner | |
results: | |
- task: | |
type: token-classification | |
name: Token Classification | |
dataset: | |
name: conll2003 | |
type: conll2003 | |
args: conll2003 | |
metrics: | |
- type: precision | |
value: 0.9398313331170938 | |
name: Precision | |
- type: recall | |
value: 0.9517943664285128 | |
name: Recall | |
- type: f1 | |
value: 0.9457750214207026 | |
name: F1 | |
- type: accuracy | |
value: 0.9853686150987764 | |
name: Accuracy | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# XLMR-ENIS-finetuned-ner | |
This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the conll2003 dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.0671 | |
- Precision: 0.9398 | |
- Recall: 0.9518 | |
- F1: 0.9458 | |
- Accuracy: 0.9854 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 16 | |
- eval_batch_size: 16 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | | |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | |
| 0.2825 | 1.0 | 878 | 0.0712 | 0.9220 | 0.9379 | 0.9299 | 0.9815 | | |
| 0.0688 | 2.0 | 1756 | 0.0689 | 0.9354 | 0.9477 | 0.9415 | 0.9839 | | |
| 0.039 | 3.0 | 2634 | 0.0671 | 0.9398 | 0.9518 | 0.9458 | 0.9854 | | |
### Framework versions | |
- Transformers 4.10.3 | |
- Pytorch 1.9.0+cu102 | |
- Datasets 1.12.1 | |
- Tokenizers 0.10.3 | |