File size: 20,381 Bytes
78232b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# MIT_LICENSE file in the root directory of this source tree.

from typing import Any, Dict, List, Literal, Optional, Tuple

import torch
import torch.nn.functional as F
from fairseq2.nn.embedding import Embedding, StandardEmbedding
from fairseq2.nn.padding import PaddingMask
from fairseq2.nn.position_encoder import PositionEncoder
from fairseq2.nn.projection import Projection
from fairseq2.typing import DataType, Device
from torch.nn import (
    ELU,
    BatchNorm1d,
    Conv1d,
    ConvTranspose1d,
    Dropout,
    Module,
    ModuleList,
    Parameter,
    Sequential,
    Tanh,
    init,
)
from torch.nn.utils.weight_norm import remove_weight_norm, weight_norm

from seamless_communication.models.generator.ecapa_tdnn import ECAPA_TDNN
from seamless_communication.models.unity.fft_decoder import FeedForwardTransformer
from seamless_communication.models.unity.length_regulator import VarianceAdaptor
from seamless_communication.models.vocoder.hifigan import (
    LRELU_SLOPE,
    ResBlock,
    init_weights,
)

from .streamable import (
    StreamableConv1d,
    StreamableConvTranspose1d,
    StreamableLSTM,
    StreamableResnetBlock,
)

ELU_PARAMS: Dict[str, Any] = {"alpha": 1.0}


class PretsselEncoderFrontend(Module):
    """
    Represent Encoder frontend, including the prosody encoder and language embedding
    """

    prosody_encoder: ECAPA_TDNN
    embed_tokens: Embedding
    embed_positions: PositionEncoder
    pos_emb_alpha: Parameter
    embed_lang: Embedding
    dropout: Dropout

    def __init__(
        self,
        prosody_encoder: ECAPA_TDNN,
        embed_tokens: Embedding,
        embed_positions: PositionEncoder,
        lang_to_index: Dict[str, int],
        lang_embed_dim: Optional[int],
        dropout_p: float,
        device: Optional[Device] = None,
        dtype: Optional[DataType] = None,
    ):
        super().__init__()

        self.prosody_encoder = prosody_encoder

        self.embed_tokens = embed_tokens

        self.embed_positions = embed_positions
        self.pos_emb_alpha = Parameter(torch.ones(1, device=device, dtype=dtype))

        self.lang_to_index = lang_to_index

        if lang_embed_dim is not None:
            self.embed_lang = StandardEmbedding(
                len(lang_to_index), lang_embed_dim, device=device, dtype=dtype
            )
        else:
            self.register_module("embed_lang", None)

        self.dropout = Dropout(dropout_p)

        self.device = device
        self.dtype = dtype

    def forward(
        self,
        seqs: torch.Tensor,
        padding_mask: Optional[PaddingMask],
        prosody_input_seqs: torch.Tensor,
        prosody_padding_mask: Optional[PaddingMask],
        tgt_lang: str,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        prosody_embs = self.prosody_encoder(
            prosody_input_seqs,
            prosody_padding_mask,
        ).unsqueeze(1)

        if self.embed_lang is not None:
            lang_index = self.lang_to_index[tgt_lang]
            lang_index_tensor = (
                torch.Tensor([lang_index]).to(seqs).repeat(seqs.size(0), 1)
            )
            lang_embeds = self.embed_lang(lang_index_tensor)
            prosody_embs = torch.cat([prosody_embs, lang_embeds], dim=-1)

        seqs = self.embed_tokens(seqs)
        seqs += self.pos_emb_alpha * (self.embed_positions(seqs, padding_mask) - seqs)
        seqs = self.dropout(seqs)

        return seqs, prosody_embs


class PretsselDecoderFrontend(Module):
    """Represent Decoder frontend, including VarianceAdaptor & Positional embedding"""

    variance_adaptor: VarianceAdaptor
    embed_positions: PositionEncoder
    pos_emb_alpha: Parameter

    def __init__(
        self,
        variance_adaptor: VarianceAdaptor,
        embed_positions: PositionEncoder,
        device: Optional[Device] = None,
        dtype: Optional[DataType] = None,
    ):
        super().__init__()

        self.variance_adaptor = variance_adaptor
        self.embed_positions = embed_positions
        self.pos_emb_alpha = Parameter(torch.ones(1, device=device, dtype=dtype))

        self.device = device
        self.dtype = dtype

    def forward(
        self,
        seqs: torch.Tensor,
        padding_mask: PaddingMask,
        durations: Optional[torch.Tensor] = None,
        duration_factor: float = 1.0,
        min_duration: int = 0,
        film_cond_emb: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, PaddingMask]:
        seqs, padding_mask, _ = self.variance_adaptor(
            seqs, padding_mask, durations, duration_factor, min_duration, film_cond_emb
        )

        seqs += self.pos_emb_alpha * (self.embed_positions(seqs, padding_mask) - seqs)

        return seqs, padding_mask


class PretsselVocoder(Module):
    """The expressivity-preserving vocoder"""

    encoder_frontend: PretsselEncoderFrontend
    encoder: FeedForwardTransformer
    decoder_frontend: PretsselDecoderFrontend
    decoder: FeedForwardTransformer
    final_proj: Projection

    def __init__(  # type: ignore[no-untyped-def]
        self,
        encoder_frontend: PretsselEncoderFrontend,
        encoder: FeedForwardTransformer,
        decoder_frontend: PretsselDecoderFrontend,
        decoder: FeedForwardTransformer,
        final_proj: Projection,
        pn_n_channels: int,
        pn_kernel_size: int,
        pn_layers: int,
        pn_dropout: float,
        upsample_rates: List[int],
        upsample_kernel_sizes: List[int],
        upsample_initial_channel: int,
        resblock_kernel_sizes: List[int],
        resblock_dilation_sizes: List[List[int]],
        mel_dim: int = 80,
        add_ups_out_pad: bool = True,
        channels: int = 1,
        dimension: int = 128,
        n_filters: int = 32,
        ratios: List[int] = [8, 5, 4, 2],
        norm: Literal[
            "none", "weight_norm", "spectral_norm", "time_group_norm"
        ] = "none",
        norm_params: Dict[str, Any] = {},
        kernel_size: int = 7,
        last_kernel_size: int = 7,
        residual_kernel_size: int = 3,
        causal: bool = False,
        pad_mode: str = "constant",
        true_skip: bool = True,
        compress: int = 2,
        lstm: int = 0,
        disable_norm_outer_blocks: int = 0,
        trim_right_ratio: float = 1.0,
        gcmvn_mean: Optional[List[float]] = None,
        gcmvn_std: Optional[List[float]] = None,
        device: Optional[Device] = None,
        dtype: Optional[DataType] = None,
    ):
        super().__init__()
        self.encoder_frontend = encoder_frontend
        self.encoder = encoder
        self.decoder_frontend = decoder_frontend
        self.decoder = decoder
        self.final_proj = final_proj
        mult = 1
        stream_layers: List[Module] = [
            StreamableConv1d(
                channels,
                mult * n_filters,
                kernel_size,
                norm="none" if disable_norm_outer_blocks >= 1 else norm,
                norm_kwargs=norm_params,
                causal=causal,
                pad_mode=pad_mode,
                activation=Tanh(),
                device=device,
                dtype=dtype,
            )
        ]
        # Downsample to from audio scale
        for i, ratio in enumerate(list(reversed(ratios))):
            block_norm = "none" if disable_norm_outer_blocks >= i + 2 else norm
            stream_layers.append(
                StreamableResnetBlock(
                    mult * n_filters,
                    kernel_sizes=[residual_kernel_size, 1],
                    dilations=[1, 1],
                    norm=block_norm,
                    norm_params=norm_params,
                    causal=causal,
                    pad_mode=pad_mode,
                    compress=compress,
                    true_skip=true_skip,
                    device=device,
                    dtype=dtype,
                )
            )
            stream_layers.append(ELU(**ELU_PARAMS))
            stream_layers.append(
                StreamableConv1d(
                    mult * n_filters,
                    mult * n_filters * 2,
                    kernel_size=ratio * 2,
                    stride=ratio,
                    norm=block_norm,
                    norm_kwargs=norm_params,
                    causal=causal,
                    pad_mode=pad_mode,
                    device=device,
                    dtype=dtype,
                )
            )
            mult *= 2

        stream_layers.append(StreamableLSTM(mult * n_filters, num_layers=lstm))
        stream_layers.append(ELU(**ELU_PARAMS))
        n_blocks = len(ratios) + 2
        stream_layers.append(
            StreamableConv1d(
                mult * n_filters,
                dimension,
                last_kernel_size,
                norm="none" if disable_norm_outer_blocks == n_blocks else norm,
                norm_kwargs=norm_params,
                causal=causal,
                pad_mode=pad_mode,
                device=device,
                dtype=dtype,
            )
        )
        stream_layers.append(
            StreamableConv1d(
                dimension,
                mult * n_filters,
                kernel_size,
                norm="none" if disable_norm_outer_blocks == n_blocks else norm,
                norm_kwargs=norm_params,
                causal=causal,
                pad_mode=pad_mode,
                device=device,
                dtype=dtype,
            )
        )
        stream_layers.append(
            StreamableLSTM(
                mult * n_filters, num_layers=lstm, device=device, dtype=dtype
            )
        )

        # resample back to raw audio scale
        for i, ratio in enumerate(ratios):
            block_norm = (
                "none" if disable_norm_outer_blocks >= n_blocks - (i + 1) else norm
            )
            stream_layers.append(ELU(**ELU_PARAMS))
            stream_layers.append(
                StreamableConvTranspose1d(
                    mult * n_filters,
                    mult * n_filters // 2,
                    kernel_size=ratio * 2,
                    stride=ratio,
                    norm=block_norm,
                    norm_kwargs=norm_params,
                    causal=causal,
                    trim_right_ratio=trim_right_ratio,
                    device=device,
                    dtype=dtype,
                )
            )
            stream_layers.append(
                StreamableResnetBlock(
                    mult * n_filters // 2,
                    kernel_sizes=[residual_kernel_size, 1],
                    dilations=[1, 1],
                    norm=block_norm,
                    norm_params=norm_params,
                    activation_params=ELU_PARAMS,
                    causal=causal,
                    pad_mode=pad_mode,
                    compress=compress,
                    true_skip=true_skip,
                    device=device,
                    dtype=dtype,
                )
            )
            mult //= 2

        stream_layers.append(ELU(**ELU_PARAMS))
        stream_layers.append(
            StreamableConv1d(
                n_filters,
                channels,
                last_kernel_size,
                norm="none" if disable_norm_outer_blocks >= 1 else norm,
                norm_kwargs=norm_params,
                causal=causal,
                pad_mode=pad_mode,
                device=device,
                dtype=dtype,
            )
        )
        self.n_streams = len(stream_layers)
        chunk_size = self.n_streams // 4
        stream_idx = 0

        self.pn_layers = pn_layers
        self.layers = ModuleList()
        assert pn_kernel_size % 2 == 1
        for i in range(pn_layers):
            cur_layers = (
                [
                    Conv1d(
                        mel_dim if i == 0 else pn_n_channels,
                        pn_n_channels if i < pn_layers - 1 else mel_dim,
                        kernel_size=pn_kernel_size,
                        padding="same",
                        device=device,
                        dtype=dtype,
                    ),
                    BatchNorm1d(
                        pn_n_channels if i < pn_layers - 1 else mel_dim,
                        device=device,
                        dtype=dtype,
                    ),
                ]
                + ([Tanh()] if i < pn_layers - 1 else [])
                + [Dropout(pn_dropout)]
            )
            self.layers.append(Sequential(*cur_layers))
        self.reset_parameters()
        self.layers.extend(stream_layers[:chunk_size])
        stream_idx += chunk_size
        self.layers.append(
            weight_norm(
                Conv1d(
                    mel_dim if mel_dim is not None else 80,
                    upsample_initial_channel,
                    7,
                    1,
                    padding="same",
                    device=device,
                    dtype=dtype,
                )
            )
        )
        self.layers.extend(stream_layers[stream_idx : stream_idx + chunk_size])  # noqa
        stream_idx += chunk_size

        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        ups = ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            out_pad = u % 2 if add_ups_out_pad else 0
            ups.append(
                weight_norm(
                    ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2 + out_pad,
                        output_padding=out_pad,
                        device=device,
                        dtype=dtype,
                    )
                )
            )
        ups.apply(init_weights)
        self.layers.extend(ups)
        self.layers.extend(stream_layers[stream_idx : stream_idx + chunk_size])  # noqa
        stream_idx += chunk_size

        for i in range(self.num_upsamples):
            ch = upsample_initial_channel // (2 ** (i + 1))
            for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
                self.layers.append(
                    ResBlock(
                        ch,
                        k,
                        d,
                    ).to(device, dtype=dtype)
                )
        self.layers.extend(stream_layers[stream_idx:])

        conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
        conv_post.apply(init_weights)
        self.layers.append(conv_post)
        for u, k in zip(upsample_rates, upsample_kernel_sizes):
            assert k == 2 * u, (k, u)

        mean = torch.zeros((mel_dim,), dtype=torch.float)
        scale = torch.zeros((mel_dim,), dtype=torch.float)
        self.register_buffer("mean", mean)
        self.register_buffer("scale", scale)

        self.gcmvn_mean = torch.tensor(gcmvn_mean, device=device, dtype=dtype)
        self.gcmvn_std = torch.tensor(gcmvn_std, device=device, dtype=dtype)

    def reset_parameters(self) -> None:
        for i in range(self.pn_layers):
            init.xavier_uniform_(
                self.layers[i][0].weight,
                init.calculate_gain("tanh" if i < self.pn_layers - 1 else "linear"),
            )

    def gcmvn_denormalize(self, x: torch.Tensor) -> torch.Tensor:
        if self.gcmvn_mean is None or self.gcmvn_std is None:
            raise ValueError("gcmvn_mean is not set")

        assert (
            x.ndim == 3
            and x.shape[2] == self.gcmvn_mean.shape[0]
            and x.shape[2] == self.gcmvn_std.shape[0]
        )
        gcmvn_mean = self.gcmvn_mean.to(x)
        gcmvn_std = self.gcmvn_std.to(x)
        x = x * gcmvn_std.view(1, 1, -1).expand_as(x)  # type: ignore[attr-defined]
        return x + gcmvn_mean.view(1, 1, -1).expand_as(x)  # type: ignore[attr-defined,no-any-return]

    def forward(
        self,
        seqs: torch.Tensor,
        tgt_lang: str,
        prosody_input_seqs: torch.Tensor,
        padding_mask: Optional[PaddingMask] = None,
        prosody_padding_mask: Optional[PaddingMask] = None,
        durations: Optional[torch.Tensor] = None,
        duration_factor: float = 1.0,
        min_duration: int = 0,
        normalize_before: bool = True,
    ) -> List[torch.Tensor]:
        # Here we are adding batch dimension for the pretssel
        if seqs.ndim < 2:
            seqs = seqs.unsqueeze(0)
        if prosody_input_seqs.ndim < 3:
            prosody_input_seqs = prosody_input_seqs.unsqueeze(0)
        seqs, cond_embs = self.encoder_frontend(
            seqs,
            padding_mask,
            prosody_input_seqs,
            prosody_padding_mask,
            tgt_lang,
        )
        seqs, padding_mask = self.encoder(seqs, padding_mask, cond_embs)
        seqs, padding_mask = self.decoder_frontend(
            seqs, padding_mask, durations, duration_factor, min_duration, cond_embs
        )
        seqs, padding_mask = self.decoder(seqs, padding_mask, cond_embs)
        seqs = self.final_proj(seqs)

        pn = seqs.transpose(1, 2)  # B x T x C -> B x C x T
        for i in range(self.pn_layers):
            pn = self.layers[i](pn)
        pn = pn.transpose(1, 2)

        x = seqs + pn
        x = self.gcmvn_denormalize(x)

        wavs = []
        for idx, _x in enumerate(x):
            _x = _x[: durations[idx].sum()]  # type: ignore[index]
            if normalize_before:
                _x = (_x - self.mean) / self.scale

            _x = _x.transpose(1, 0).unsqueeze(0)
            chunk_size = self.n_streams // 4
            _x = self.layers[self.pn_layers + chunk_size](_x)
            for i in range(self.num_upsamples):
                _x = F.leaky_relu(_x, LRELU_SLOPE)
                _x = self.layers[i + self.pn_layers + 1 + 2 * chunk_size](_x)
                xs = None
                for j in range(self.num_kernels):
                    if xs is None:
                        xs = self.layers[
                            i * self.num_kernels
                            + j
                            + self.pn_layers
                            + 3 * chunk_size
                            + self.num_upsamples
                            + 1
                        ](_x)
                    else:
                        xs += self.layers[
                            i * self.num_kernels
                            + j
                            + self.pn_layers
                            + 3 * chunk_size
                            + self.num_upsamples
                            + 1
                        ](_x)
                _x = xs / self.num_kernels  # type: ignore
            _x = F.leaky_relu(_x)
            _x = self.layers[
                self.pn_layers
                + self.n_streams
                + self.num_upsamples * (1 + self.num_kernels)
                + 1
            ](_x)
            skip_output = _x
            h = skip_output

            for i1 in range(self.pn_layers, self.pn_layers + chunk_size):
                h = self.layers[i1](h)
            i1 += 2
            for i2 in range(i1, i1 + chunk_size):
                h = self.layers[i2](h)
            i2 = i2 + self.num_upsamples + 1

            for i3 in range(i2, i2 + chunk_size):
                h = self.layers[i3](h)
            i3 = i3 + (self.num_upsamples * self.num_kernels) + 1
            for i4 in range(i3, i3 + chunk_size):
                h = self.layers[i4](h)
            h = h[:, :, : _x.size(-1)]

            wavs.append(0.8 * h + torch.tanh(skip_output).squeeze(0))
        return wavs

    def remove_weight_norm(self) -> None:
        i = self.pn_layers + 1
        for j in range(self.num_upsamples):
            remove_weight_norm(self.layers[i + j])
        for k in range(self.num_upsamples * self.num_kernels):
            self.layers[i + j + k + 1].remove_weight_norm()
        remove_weight_norm(self.layers[self.pn_layers])
        remove_weight_norm(
            self.layers[
                self.pn_layers + 1 + self.num_upsamples * (1 + self.num_kernels)
            ]
        )