|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from fairseq2.nn.padding import PaddingMask, to_padding_mask |
|
from torch import Tensor |
|
from torch.nn import Conv1d, LayerNorm, Module, ModuleList, ReLU, Sigmoid, Tanh, init |
|
|
|
|
|
class ECAPA_TDNN(Module): |
|
""" |
|
Represents the ECAPA-TDNN model described in paper: |
|
:cite:t`https://doi.org/10.48550/arxiv.2005.07143`. |
|
|
|
Arguments |
|
--------- |
|
:param channels: |
|
Output channels for TDNN/SERes2Net layer. |
|
:param kernel_sizes: |
|
List of kernel sizes for each layer. |
|
:param dilations: |
|
List of dilations for kernels in each layer. |
|
:param groups: |
|
List of groups for kernels in each layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: List[int], |
|
kernel_sizes: List[int], |
|
dilations: List[int], |
|
attention_channels: int, |
|
res2net_scale: int, |
|
se_channels: int, |
|
global_context: bool, |
|
groups: List[int], |
|
embed_dim: int, |
|
input_dim: int, |
|
): |
|
super().__init__() |
|
assert len(channels) == len(kernel_sizes) == len(dilations) |
|
self.channels = channels |
|
self.embed_dim = embed_dim |
|
self.blocks = ModuleList() |
|
|
|
self.blocks.append( |
|
TDNNBlock( |
|
input_dim, |
|
channels[0], |
|
kernel_sizes[0], |
|
dilations[0], |
|
groups[0], |
|
) |
|
) |
|
|
|
|
|
for i in range(1, len(channels) - 1): |
|
self.blocks.append( |
|
SERes2NetBlock( |
|
channels[i - 1], |
|
channels[i], |
|
res2net_scale=res2net_scale, |
|
se_channels=se_channels, |
|
kernel_size=kernel_sizes[i], |
|
dilation=dilations[i], |
|
groups=groups[i], |
|
) |
|
) |
|
|
|
|
|
self.mfa = TDNNBlock( |
|
channels[-1], |
|
channels[-1], |
|
kernel_sizes[-1], |
|
dilations[-1], |
|
groups=groups[-1], |
|
) |
|
|
|
|
|
self.asp = AttentiveStatisticsPooling( |
|
channels[-1], |
|
attention_channels=attention_channels, |
|
global_context=global_context, |
|
) |
|
self.asp_norm = LayerNorm(channels[-1] * 2, eps=1e-12) |
|
|
|
|
|
self.fc = Conv1d( |
|
in_channels=channels[-1] * 2, |
|
out_channels=embed_dim, |
|
kernel_size=1, |
|
) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
"""Reset the parameters and buffers of the module.""" |
|
|
|
def encoder_init(m: Module) -> None: |
|
if isinstance(m, Conv1d): |
|
init.xavier_uniform_(m.weight, init.calculate_gain("relu")) |
|
|
|
self.apply(encoder_init) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
padding_mask: Optional[PaddingMask] = None, |
|
) -> Tensor: |
|
"""Returns the embedding vector. |
|
|
|
Arguments |
|
--------- |
|
x : torch.Tensor |
|
Tensor of shape (batch, time, channel). |
|
""" |
|
|
|
x = x.transpose(1, 2) |
|
|
|
xl = [] |
|
for layer in self.blocks: |
|
x = layer(x, padding_mask=padding_mask) |
|
xl.append(x) |
|
|
|
|
|
x = torch.cat(xl[1:], dim=1) |
|
x = self.mfa(x) |
|
|
|
|
|
x = self.asp(x, padding_mask=padding_mask) |
|
x = self.asp_norm(x.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
x = self.fc(x) |
|
|
|
x = x.transpose(1, 2).squeeze(1) |
|
return F.normalize(x, dim=-1) |
|
|
|
|
|
class TDNNBlock(Module): |
|
"""An implementation of TDNN. |
|
|
|
Arguments |
|
---------- |
|
:param in_channels : int |
|
Number of input channels. |
|
:param out_channels : int |
|
The number of output channels. |
|
:param kernel_size : int |
|
The kernel size of the TDNN blocks. |
|
:param dilation : int |
|
The dilation of the TDNN block. |
|
:param groups: int |
|
The groups size of the TDNN blocks. |
|
|
|
Example |
|
------- |
|
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) |
|
>>> layer = TDNNBlock(64, 64, kernel_size=3, dilation=1) |
|
>>> out_tensor = layer(inp_tensor).transpose(1, 2) |
|
>>> out_tensor.shape |
|
torch.Size([8, 120, 64]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
dilation: int, |
|
groups: int = 1, |
|
): |
|
super().__init__() |
|
self.conv = Conv1d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
dilation=dilation, |
|
padding=dilation * (kernel_size - 1) // 2, |
|
groups=groups, |
|
) |
|
self.activation = ReLU() |
|
self.norm = LayerNorm(out_channels, eps=1e-12) |
|
|
|
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: |
|
"""Processes the input tensor x and returns an output tensor.""" |
|
x = self.activation(self.conv(x)) |
|
|
|
return self.norm(x.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
class Res2NetBlock(Module): |
|
"""An implementation of Res2NetBlock w/ dilation. |
|
|
|
Arguments |
|
--------- |
|
:param in_channels : int |
|
The number of channels expected in the input. |
|
:param out_channels : int |
|
The number of output channels. |
|
:param scale : int |
|
The scale of the Res2Net block. |
|
:param kernel_size: int |
|
The kernel size of the Res2Net block. |
|
:param dilation : int |
|
The dilation of the Res2Net block. |
|
|
|
Example |
|
------- |
|
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) |
|
>>> layer = Res2NetBlock(64, 64, scale=4, dilation=3) |
|
>>> out_tensor = layer(inp_tensor).transpose(1, 2) |
|
>>> out_tensor.shape |
|
torch.Size([8, 120, 64]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
scale: int = 8, |
|
kernel_size: int = 3, |
|
dilation: int = 1, |
|
): |
|
super().__init__() |
|
assert in_channels % scale == 0 |
|
assert out_channels % scale == 0 |
|
|
|
in_channel = in_channels // scale |
|
hidden_channel = out_channels // scale |
|
self.blocks = ModuleList( |
|
[ |
|
TDNNBlock( |
|
in_channel, |
|
hidden_channel, |
|
kernel_size=kernel_size, |
|
dilation=dilation, |
|
) |
|
for i in range(scale - 1) |
|
] |
|
) |
|
self.scale = scale |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
"""Processes the input tensor x and returns an output tensor.""" |
|
y = [] |
|
for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)): |
|
if i == 0: |
|
y_i = x_i |
|
elif i == 1: |
|
y_i = self.blocks[i - 1](x_i) |
|
else: |
|
y_i = self.blocks[i - 1](x_i + y_i) |
|
y.append(y_i) |
|
|
|
y_tensor = torch.cat(y, dim=1) |
|
return y_tensor |
|
|
|
|
|
class SEBlock(Module): |
|
"""An implementation of squeeze-and-excitation block. |
|
|
|
Arguments |
|
--------- |
|
in_channels : int |
|
The number of input channels. |
|
se_channels : int |
|
The number of output channels after squeeze. |
|
out_channels : int |
|
The number of output channels. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
se_channels: int, |
|
out_channels: int, |
|
): |
|
super().__init__() |
|
|
|
self.conv1 = Conv1d( |
|
in_channels=in_channels, out_channels=se_channels, kernel_size=1 |
|
) |
|
self.relu = ReLU(inplace=True) |
|
self.conv2 = Conv1d( |
|
in_channels=se_channels, out_channels=out_channels, kernel_size=1 |
|
) |
|
self.sigmoid = Sigmoid() |
|
|
|
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: |
|
"""Processes the input tensor x and returns an output tensor.""" |
|
if padding_mask is not None: |
|
mask = padding_mask.materialize().unsqueeze(1) |
|
s = (x * mask).sum(dim=2, keepdim=True) / padding_mask.seq_lens[ |
|
:, None, None |
|
] |
|
else: |
|
s = x.mean(dim=2, keepdim=True) |
|
|
|
s = self.relu(self.conv1(s)) |
|
s = self.sigmoid(self.conv2(s)) |
|
|
|
return s * x |
|
|
|
|
|
class AttentiveStatisticsPooling(Module): |
|
"""This class implements an attentive statistic pooling layer for each channel. |
|
It returns the concatenated mean and std of the input tensor. |
|
|
|
Arguments |
|
--------- |
|
channels: int |
|
The number of input channels. |
|
attention_channels: int |
|
The number of attention channels. |
|
""" |
|
|
|
def __init__( |
|
self, channels: int, attention_channels: int = 128, global_context: bool = True |
|
): |
|
super().__init__() |
|
|
|
self.eps = 1e-12 |
|
self.global_context = global_context |
|
if global_context: |
|
self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1) |
|
else: |
|
self.tdnn = TDNNBlock(channels, attention_channels, 1, 1) |
|
|
|
self.tanh = Tanh() |
|
self.conv = Conv1d( |
|
in_channels=attention_channels, out_channels=channels, kernel_size=1 |
|
) |
|
|
|
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: |
|
"""Calculates mean and std for a batch (input tensor). |
|
|
|
Arguments |
|
--------- |
|
x : torch.Tensor |
|
Tensor of shape [N, C, L]. |
|
""" |
|
L = x.shape[-1] |
|
|
|
def _compute_statistics( |
|
x: Tensor, m: Tensor, dim: int = 2, eps: float = self.eps |
|
) -> Tuple[Tensor, Tensor]: |
|
mean = (m * x).sum(dim) |
|
std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps)) |
|
return mean, std |
|
|
|
|
|
|
|
|
|
|
|
|
|
if padding_mask is not None: |
|
mask = padding_mask.materialize() |
|
else: |
|
mask = to_padding_mask(torch.IntTensor([L]), L).repeat(x.shape[0], 1).to(x) |
|
mask = mask.unsqueeze(1) |
|
|
|
|
|
|
|
if self.global_context: |
|
|
|
|
|
total = mask.sum(dim=2, keepdim=True).to(x) |
|
mean, std = _compute_statistics(x, mask / total) |
|
mean = mean.unsqueeze(2).repeat(1, 1, L) |
|
std = std.unsqueeze(2).repeat(1, 1, L) |
|
attn = torch.cat([x, mean, std], dim=1) |
|
else: |
|
attn = x |
|
|
|
|
|
attn = self.conv(self.tanh(self.tdnn(attn))) |
|
|
|
|
|
attn = attn.masked_fill(mask == 0, float("-inf")) |
|
|
|
attn = F.softmax(attn, dim=2) |
|
mean, std = _compute_statistics(x, attn) |
|
|
|
pooled_stats = torch.cat((mean, std), dim=1) |
|
pooled_stats = pooled_stats.unsqueeze(2) |
|
|
|
return pooled_stats |
|
|
|
|
|
class SERes2NetBlock(Module): |
|
"""An implementation of building block in ECAPA-TDNN, i.e., |
|
TDNN-Res2Net-TDNN-SEBlock. |
|
|
|
Arguments |
|
---------- |
|
out_channels: int |
|
The number of output channels. |
|
res2net_scale: int |
|
The scale of the Res2Net block. |
|
kernel_size: int |
|
The kernel size of the TDNN blocks. |
|
dilation: int |
|
The dilation of the Res2Net block. |
|
groups: int |
|
Number of blocked connections from input channels to output channels. |
|
|
|
Example |
|
------- |
|
>>> x = torch.rand(8, 120, 64).transpose(1, 2) |
|
>>> conv = SERes2NetBlock(64, 64, res2net_scale=4) |
|
>>> out = conv(x).transpose(1, 2) |
|
>>> out.shape |
|
torch.Size([8, 120, 64]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
res2net_scale: int = 8, |
|
se_channels: int = 128, |
|
kernel_size: int = 1, |
|
dilation: int = 1, |
|
groups: int = 1, |
|
): |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.tdnn1 = TDNNBlock( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
dilation=1, |
|
groups=groups, |
|
) |
|
self.res2net_block = Res2NetBlock( |
|
out_channels, |
|
out_channels, |
|
res2net_scale, |
|
kernel_size, |
|
dilation, |
|
) |
|
self.tdnn2 = TDNNBlock( |
|
out_channels, |
|
out_channels, |
|
kernel_size=1, |
|
dilation=1, |
|
groups=groups, |
|
) |
|
self.se_block = SEBlock(out_channels, se_channels, out_channels) |
|
|
|
self.shortcut = None |
|
if in_channels != out_channels: |
|
self.shortcut = Conv1d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
) |
|
|
|
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: |
|
"""Processes the input tensor x and returns an output tensor.""" |
|
residual = x |
|
if self.shortcut: |
|
residual = self.shortcut(x) |
|
|
|
x = self.tdnn1(x) |
|
x = self.res2net_block(x) |
|
x = self.tdnn2(x) |
|
x = self.se_block(x, padding_mask=padding_mask) |
|
|
|
return x + residual |
|
|