SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 8 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
RequestMoveToFloor |
|
RequestMoveUp |
|
RequestMoveDown |
|
Confirm |
|
RequestEmployeeLocation |
|
CurrentFloor |
|
Stop |
|
OutOfCoverage |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("victomoe/setfit-intent-classifier-3")
# Run inference
preds = model("Okay, go ahead.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 5.2118 | 9 |
Label | Training Sample Count |
---|---|
Confirm | 22 |
CurrentFloor | 21 |
OutOfCoverage | 22 |
RequestEmployeeLocation | 22 |
RequestMoveDown | 20 |
RequestMoveToFloor | 23 |
RequestMoveUp | 20 |
Stop | 20 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0013 | 1 | 0.195 | - |
0.0633 | 50 | 0.1877 | - |
0.1266 | 100 | 0.1592 | - |
0.1899 | 150 | 0.1141 | - |
0.2532 | 200 | 0.0603 | - |
0.3165 | 250 | 0.0283 | - |
0.3797 | 300 | 0.0104 | - |
0.4430 | 350 | 0.0043 | - |
0.5063 | 400 | 0.0027 | - |
0.5696 | 450 | 0.0021 | - |
0.6329 | 500 | 0.0017 | - |
0.6962 | 550 | 0.0015 | - |
0.7595 | 600 | 0.0011 | - |
0.8228 | 650 | 0.001 | - |
0.8861 | 700 | 0.0011 | - |
0.9494 | 750 | 0.0008 | - |
1.0127 | 800 | 0.0007 | - |
1.0759 | 850 | 0.0006 | - |
1.1392 | 900 | 0.0006 | - |
1.2025 | 950 | 0.0005 | - |
1.2658 | 1000 | 0.0005 | - |
1.3291 | 1050 | 0.0005 | - |
1.3924 | 1100 | 0.0004 | - |
1.4557 | 1150 | 0.0004 | - |
1.5190 | 1200 | 0.0004 | - |
1.5823 | 1250 | 0.0004 | - |
1.6456 | 1300 | 0.0004 | - |
1.7089 | 1350 | 0.0003 | - |
1.7722 | 1400 | 0.0003 | - |
1.8354 | 1450 | 0.0003 | - |
1.8987 | 1500 | 0.0003 | - |
1.9620 | 1550 | 0.0003 | - |
2.0253 | 1600 | 0.0003 | - |
2.0886 | 1650 | 0.0003 | - |
2.1519 | 1700 | 0.0003 | - |
2.2152 | 1750 | 0.0003 | - |
2.2785 | 1800 | 0.0003 | - |
2.3418 | 1850 | 0.0002 | - |
2.4051 | 1900 | 0.0002 | - |
2.4684 | 1950 | 0.0002 | - |
2.5316 | 2000 | 0.0002 | - |
2.5949 | 2050 | 0.0002 | - |
2.6582 | 2100 | 0.0002 | - |
2.7215 | 2150 | 0.0002 | - |
2.7848 | 2200 | 0.0002 | - |
2.8481 | 2250 | 0.0002 | - |
2.9114 | 2300 | 0.0002 | - |
2.9747 | 2350 | 0.0002 | - |
3.0380 | 2400 | 0.0002 | - |
3.1013 | 2450 | 0.0009 | - |
3.1646 | 2500 | 0.0003 | - |
3.2278 | 2550 | 0.0002 | - |
3.2911 | 2600 | 0.0002 | - |
3.3544 | 2650 | 0.0002 | - |
3.4177 | 2700 | 0.0002 | - |
3.4810 | 2750 | 0.0002 | - |
3.5443 | 2800 | 0.0002 | - |
3.6076 | 2850 | 0.0002 | - |
3.6709 | 2900 | 0.0002 | - |
3.7342 | 2950 | 0.0002 | - |
3.7975 | 3000 | 0.0002 | - |
3.8608 | 3050 | 0.0002 | - |
3.9241 | 3100 | 0.0001 | - |
3.9873 | 3150 | 0.0002 | - |
4.0506 | 3200 | 0.0001 | - |
4.1139 | 3250 | 0.0001 | - |
4.1772 | 3300 | 0.0001 | - |
4.2405 | 3350 | 0.0001 | - |
4.3038 | 3400 | 0.0001 | - |
4.3671 | 3450 | 0.0001 | - |
4.4304 | 3500 | 0.0005 | - |
4.4937 | 3550 | 0.0001 | - |
4.5570 | 3600 | 0.0001 | - |
4.6203 | 3650 | 0.0001 | - |
4.6835 | 3700 | 0.0001 | - |
4.7468 | 3750 | 0.0001 | - |
4.8101 | 3800 | 0.0001 | - |
4.8734 | 3850 | 0.0001 | - |
4.9367 | 3900 | 0.0001 | - |
5.0 | 3950 | 0.0001 | - |
5.0633 | 4000 | 0.0001 | - |
5.1266 | 4050 | 0.0001 | - |
5.1899 | 4100 | 0.0001 | - |
5.2532 | 4150 | 0.0001 | - |
5.3165 | 4200 | 0.0001 | - |
5.3797 | 4250 | 0.0001 | - |
5.4430 | 4300 | 0.0001 | - |
5.5063 | 4350 | 0.0001 | - |
5.5696 | 4400 | 0.0001 | - |
5.6329 | 4450 | 0.0001 | - |
5.6962 | 4500 | 0.0001 | - |
5.7595 | 4550 | 0.0001 | - |
5.8228 | 4600 | 0.0001 | - |
5.8861 | 4650 | 0.0001 | - |
5.9494 | 4700 | 0.0001 | - |
6.0127 | 4750 | 0.0001 | - |
6.0759 | 4800 | 0.0001 | - |
6.1392 | 4850 | 0.0001 | - |
6.2025 | 4900 | 0.0001 | - |
6.2658 | 4950 | 0.0001 | - |
6.3291 | 5000 | 0.0001 | - |
6.3924 | 5050 | 0.0001 | - |
6.4557 | 5100 | 0.0001 | - |
6.5190 | 5150 | 0.0001 | - |
6.5823 | 5200 | 0.0001 | - |
6.6456 | 5250 | 0.0001 | - |
6.7089 | 5300 | 0.0001 | - |
6.7722 | 5350 | 0.0001 | - |
6.8354 | 5400 | 0.0001 | - |
6.8987 | 5450 | 0.0001 | - |
6.9620 | 5500 | 0.0001 | - |
7.0253 | 5550 | 0.0001 | - |
7.0886 | 5600 | 0.0001 | - |
7.1519 | 5650 | 0.0001 | - |
7.2152 | 5700 | 0.0001 | - |
7.2785 | 5750 | 0.0001 | - |
7.3418 | 5800 | 0.0001 | - |
7.4051 | 5850 | 0.0001 | - |
7.4684 | 5900 | 0.0001 | - |
7.5316 | 5950 | 0.0001 | - |
7.5949 | 6000 | 0.0001 | - |
7.6582 | 6050 | 0.0001 | - |
7.7215 | 6100 | 0.0001 | - |
7.7848 | 6150 | 0.0001 | - |
7.8481 | 6200 | 0.0001 | - |
7.9114 | 6250 | 0.0001 | - |
7.9747 | 6300 | 0.0001 | - |
8.0380 | 6350 | 0.0001 | - |
8.1013 | 6400 | 0.0001 | - |
8.1646 | 6450 | 0.0001 | - |
8.2278 | 6500 | 0.0001 | - |
8.2911 | 6550 | 0.0001 | - |
8.3544 | 6600 | 0.0001 | - |
8.4177 | 6650 | 0.0001 | - |
8.4810 | 6700 | 0.0001 | - |
8.5443 | 6750 | 0.0001 | - |
8.6076 | 6800 | 0.0001 | - |
8.6709 | 6850 | 0.0001 | - |
8.7342 | 6900 | 0.0001 | - |
8.7975 | 6950 | 0.0001 | - |
8.8608 | 7000 | 0.0001 | - |
8.9241 | 7050 | 0.0001 | - |
8.9873 | 7100 | 0.0001 | - |
9.0506 | 7150 | 0.0001 | - |
9.1139 | 7200 | 0.0001 | - |
9.1772 | 7250 | 0.0001 | - |
9.2405 | 7300 | 0.0001 | - |
9.3038 | 7350 | 0.0001 | - |
9.3671 | 7400 | 0.0001 | - |
9.4304 | 7450 | 0.0001 | - |
9.4937 | 7500 | 0.0001 | - |
9.5570 | 7550 | 0.0001 | - |
9.6203 | 7600 | 0.0001 | - |
9.6835 | 7650 | 0.0001 | - |
9.7468 | 7700 | 0.0001 | - |
9.8101 | 7750 | 0.0001 | - |
9.8734 | 7800 | 0.0001 | - |
9.9367 | 7850 | 0.0001 | - |
10.0 | 7900 | 0.0001 | - |
Framework Versions
- Python: 3.10.8
- SetFit: 1.1.0
- Sentence Transformers: 3.1.1
- Transformers: 4.38.2
- PyTorch: 2.1.2
- Datasets: 2.17.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.