|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import get_peft_model, LoraConfig |
|
from safetensors.torch import load_file |
|
from huggingface_hub import hf_hub_download |
|
import torch |
|
import os |
|
|
|
token = os.getenv("HUGGINGFACE_HUB_TOKEN") |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", token=token) |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"meta-llama/Llama-2-7b-hf", |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
token=token |
|
) |
|
|
|
lora_config = LoraConfig( |
|
r=8, |
|
lora_alpha=32, |
|
target_modules=["q_proj"], |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM" |
|
) |
|
|
|
self.model = get_peft_model(base_model, lora_config) |
|
adapter_path = hf_hub_download( |
|
repo_id="vignesh0007/Anime-Gen-Llama-2-7B", |
|
filename="adapter_model.safetensors", |
|
repo_type="model", |
|
token=token |
|
) |
|
lora_state = load_file(adapter_path) |
|
self.model.load_state_dict(lora_state, strict=False) |
|
self.model.eval() |
|
|
|
def __call__(self, data): |
|
inputs = data.get("inputs", "") |
|
tokens = self.tokenizer(inputs, return_tensors="pt").to(self.model.device) |
|
with torch.no_grad(): |
|
outputs = self.model.generate( |
|
**tokens, |
|
max_new_tokens=256, |
|
temperature=0.8, |
|
top_p=0.95, |
|
do_sample=True |
|
) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|