metadata
library_name: transformers
license: apache-2.0
base_model: vikas117/finetuned-ai-real-beit
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-ai-real-beit
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9338842975206612
finetuned-ai-real-beit
This model is a fine-tuned version of vikas117/finetuned-ai-real-beit on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2805
- Accuracy: 0.9339
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4366 | 0.4545 | 10 | 0.0494 | 0.9752 |
0.0713 | 0.9091 | 20 | 0.1101 | 0.9587 |
0.0302 | 1.3636 | 30 | 0.2225 | 0.9587 |
0.0531 | 1.8182 | 40 | 0.2805 | 0.9339 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0