metadata
license: apache-2.0
base_model: google/bit-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: bit-50-finetuned-landscape-test
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9365918097754293
bit-50-finetuned-landscape-test
This model is a fine-tuned version of google/bit-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1774
- Accuracy: 0.9366
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
252224972.8 | 0.9684 | 23 | 0.4457 | 0.8217 |
0.4535 | 1.9789 | 47 | 0.2388 | 0.9168 |
0.3491 | 2.9895 | 71 | 0.2022 | 0.9300 |
818423.4 | 4.0 | 95 | 0.1818 | 0.9339 |
0.2255 | 4.8421 | 115 | 0.1774 | 0.9366 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1