metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-landscape
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9365918097754293
swin-tiny-patch4-window7-224-finetuned-landscape
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1881
- Accuracy: 0.9366
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.6193 | 0.9684 | 23 | 1.0203 | 0.6618 |
0.5876 | 1.9789 | 47 | 0.3358 | 0.8904 |
0.3585 | 2.9895 | 71 | 0.2494 | 0.9207 |
0.2906 | 4.0 | 95 | 0.2333 | 0.9207 |
0.2591 | 4.9684 | 118 | 0.2078 | 0.9313 |
0.2458 | 5.9789 | 142 | 0.2229 | 0.9234 |
0.1936 | 6.9895 | 166 | 0.2095 | 0.9221 |
0.1765 | 8.0 | 190 | 0.1941 | 0.9247 |
0.1915 | 8.9684 | 213 | 0.1890 | 0.9366 |
0.1824 | 9.6842 | 230 | 0.1881 | 0.9366 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1