metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-finetuned-landscape-test
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9431968295904888
swinv2-tiny-patch4-window8-256-finetuned-landscape-test
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1919
- Accuracy: 0.9432
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1229 | 0.9684 | 23 | 0.3575 | 0.8705 |
0.394 | 1.9789 | 47 | 0.2227 | 0.9128 |
0.3494 | 2.9895 | 71 | 0.2149 | 0.9155 |
0.3169 | 4.0 | 95 | 0.1964 | 0.9353 |
0.2678 | 4.8421 | 115 | 0.1919 | 0.9432 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1