|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-tiny-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
model-index: |
|
- name: convnextv2-tiny-1k-224-finetuned-pattern-v2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8075 |
|
- name: Precision |
|
type: precision |
|
value: 0.815145699366171 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-tiny-1k-224-finetuned-pattern-v2 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5496 |
|
- Accuracy: 0.8075 |
|
- Precision: 0.8151 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:| |
|
| No log | 1.0 | 320 | 0.8829 | 0.7275 | 0.7493 | |
|
| 1.2279 | 2.0 | 640 | 0.7396 | 0.7412 | 0.7517 | |
|
| 1.2279 | 3.0 | 960 | 0.6526 | 0.7775 | 0.7902 | |
|
| 0.6811 | 4.0 | 1280 | 0.5722 | 0.7975 | 0.8076 | |
|
| 0.5073 | 5.0 | 1600 | 0.5496 | 0.8075 | 0.8151 | |
|
| 0.5073 | 6.0 | 1920 | 0.6014 | 0.7887 | 0.7991 | |
|
| 0.4098 | 7.0 | 2240 | 0.5759 | 0.8125 | 0.8171 | |
|
| 0.3357 | 8.0 | 2560 | 0.6241 | 0.7987 | 0.8126 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|