|
--- |
|
license: mit |
|
base_model: microsoft/git-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: GIT_inf_only_ep5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# GIT_inf_only_ep5 |
|
|
|
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the Sherlock dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0494 |
|
- Rouge1: 44.6137 |
|
- Rouge2: 13.6972 |
|
- Rougel: 43.5306 |
|
- Rougelsum: 43.5484 |
|
- Gen Len: 207.45 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| |
|
| 0.0526 | 1.0 | 1586 | 0.0505 | 3.3402 | 0.8279 | 3.239 | 3.2361 | 207.45 | |
|
| 0.0457 | 2.0 | 3172 | 0.0496 | 40.1232 | 13.4573 | 39.2584 | 39.2555 | 207.4505 | |
|
| 0.0404 | 3.0 | 4758 | 0.0492 | 42.6704 | 12.4947 | 41.5807 | 41.5836 | 207.4505 | |
|
| 0.0368 | 4.0 | 6344 | 0.0494 | 44.5041 | 14.6203 | 43.3769 | 43.423 | 207.4505 | |
|
| 0.0331 | 5.0 | 7930 | 0.0494 | 44.6137 | 13.6972 | 43.5306 | 43.5484 | 207.45 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|