Compressed LLM Model Zone

The models are prepared by Visual Informatics Group @ University of Texas at Austin (VITA-group). Credits to Ajay Jaiswal, Zhenyu Zhang.

License: MIT License

Setup environment

pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install transformers==4.31.0
pip install accelerate

How to use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_method = 'magnitude_unstructured'
comp_degree = 0.2
model_path = f'vita-group/{base_model}_{comp_method}'
model = AutoModelForCausalLM.from_pretrained(
        model_path, 
        revision=f's{comp_degree}',
        torch_dtype=torch.float16, 
        low_cpu_mem_usage=True, 
        device_map="auto"
    )
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Base Model Model Size Compression Method Compression Degree
0 Llama-2 7b magnitude_unstructured s0.1
1 Llama-2 7b magnitude_unstructured s0.2
2 Llama-2 7b magnitude_unstructured s0.3
3 Llama-2 7b magnitude_unstructured s0.5
4 Llama-2 7b magnitude_unstructured s0.6
5 Llama-2 7b sparsegpt_unstructured s0.1
6 Llama-2 7b sparsegpt_unstructured s0.2
7 Llama-2 7b sparsegpt_unstructured s0.3
8 Llama-2 7b sparsegpt_unstructured s0.5
9 Llama-2 7b sparsegpt_unstructured s0.6
10 Llama-2 7b wanda_unstructured s0.1
11 Llama-2 7b wanda_unstructured s0.2
12 Llama-2 7b wanda_unstructured s0.3
13 Llama-2 7b wanda_unstructured s0.5
14 Llama-2 7b wanda_unstructured s0.6
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .