Compressed LLM Model Zone
The models are prepared by Visual Informatics Group @ University of Texas at Austin (VITA-group). Credits to Ajay Jaiswal, Zhenyu Zhang.
License: MIT License
Setup environment
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install transformers==4.31.0
pip install accelerate
How to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_method = 'magnitude_unstructured'
comp_degree = 0.2
model_path = f'vita-group/{base_model}_{comp_method}'
model = AutoModelForCausalLM.from_pretrained(
model_path,
revision=f's{comp_degree}',
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Base Model | Model Size | Compression Method | Compression Degree | |
---|---|---|---|---|
0 | Llama-2 | 7b | magnitude_unstructured | s0.1 |
1 | Llama-2 | 7b | magnitude_unstructured | s0.2 |
2 | Llama-2 | 7b | magnitude_unstructured | s0.3 |
3 | Llama-2 | 7b | magnitude_unstructured | s0.5 |
4 | Llama-2 | 7b | magnitude_unstructured | s0.6 |
5 | Llama-2 | 7b | sparsegpt_unstructured | s0.1 |
6 | Llama-2 | 7b | sparsegpt_unstructured | s0.2 |
7 | Llama-2 | 7b | sparsegpt_unstructured | s0.3 |
8 | Llama-2 | 7b | sparsegpt_unstructured | s0.5 |
9 | Llama-2 | 7b | sparsegpt_unstructured | s0.6 |
10 | Llama-2 | 7b | wanda_unstructured | s0.1 |
11 | Llama-2 | 7b | wanda_unstructured | s0.2 |
12 | Llama-2 | 7b | wanda_unstructured | s0.3 |
13 | Llama-2 | 7b | wanda_unstructured | s0.5 |
14 | Llama-2 | 7b | wanda_unstructured | s0.6 |