File size: 4,937 Bytes
d1cbaa0
 
 
 
 
 
7c94059
d1cbaa0
 
 
 
 
46ea3b9
d1cbaa0
46ea3b9
d1cbaa0
 
 
 
46ea3b9
d1cbaa0
 
29fd13c
 
 
d1cbaa0
 
29fd13c
d1cbaa0
 
 
 
29fd13c
d1cbaa0
 
29fd13c
d1cbaa0
 
 
29fd13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: mit
---

# Compressed LLM Model Zone

The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang.

License: [MIT License](https://opensource.org/license/mit/)

Setup environment
```shell
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install transformers==4.31.0
pip install accelerate
```

How to use
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_method = 'magnitude_unstructured'
comp_degree = 0.2
model_path = f'vita-group/{base_model}_{comp_method}'
model = AutoModelForCausalLM.from_pretrained(
        model_path, 
        revision=f's{comp_degree}',
        torch_dtype=torch.float16, 
        low_cpu_mem_usage=True, 
        device_map="auto"
    )
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```


|    | Base Model   | Model Size   | Compression Method                                                                            | Compression Degree                                                                    |
|---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
|  0 | Llama-2      | 7b           | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) |
|  1 | Llama-2      | 7b           | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) |
|  2 | Llama-2      | 7b           | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) |
|  3 | Llama-2      | 7b           | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) |
|  4 | Llama-2      | 7b           | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) |
|  5 | Llama-2      | 7b           | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) |
|  6 | Llama-2      | 7b           | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) |
|  7 | Llama-2      | 7b           | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) |
|  8 | Llama-2      | 7b           | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) |
|  9 | Llama-2      | 7b           | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) |
| 10 | Llama-2      | 7b           | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured)         | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1)     |
| 11 | Llama-2      | 7b           | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured)         | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2)     |
| 12 | Llama-2      | 7b           | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured)         | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3)     |
| 13 | Llama-2      | 7b           | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured)         | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5)     |
| 14 | Llama-2      | 7b           | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured)         | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6)     |