This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the librispeech_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1444
  • Wer: 0.1167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9365 4.17 500 2.9398 0.9999
1.5444 8.33 1000 0.5947 0.4289
1.1367 12.5 1500 0.2751 0.2366
0.9972 16.66 2000 0.2032 0.1797
0.9118 20.83 2500 0.1786 0.1479
0.8664 24.99 3000 0.1641 0.1408
0.8251 29.17 3500 0.1537 0.1267
0.793 33.33 4000 0.1525 0.1244
0.785 37.5 4500 0.1470 0.1184
0.7612 41.66 5000 0.1446 0.1177
0.7478 45.83 5500 0.1449 0.1176
0.7443 49.99 6000 0.1444 0.1167

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
35
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vitouphy/wav2vec2-xls-r-300m-english

Finetunes
1 model

Dataset used to train vitouphy/wav2vec2-xls-r-300m-english

Evaluation results