add evaluation
Browse files- README.md +31 -5
- eval.py +5 -7
- eval.sh +13 -13
- librispeech_asr_clean_test_eval_results.txt +2 -0
- log_librispeech_asr_clean_test_predictions.txt +0 -0
- log_librispeech_asr_clean_test_targets.txt +0 -0
- log_speech-recognition-community-v2_dev_data_en_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_en_validation_targets.txt +0 -0
- speech-recognition-community-v2_dev_data_en_validation_eval_results.txt +2 -0
README.md
CHANGED
@@ -9,13 +9,38 @@ tags:
|
|
9 |
- en
|
10 |
- generated_from_trainer
|
11 |
model-index:
|
12 |
-
- name:
|
13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
-
|
19 |
#
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset.
|
@@ -23,6 +48,7 @@ It achieves the following results on the evaluation set:
|
|
23 |
- Loss: 0.1444
|
24 |
- Wer: 0.1167
|
25 |
|
|
|
26 |
## Model description
|
27 |
|
28 |
More information needed
|
|
|
9 |
- en
|
10 |
- generated_from_trainer
|
11 |
model-index:
|
12 |
+
- name: XLS-R-300M - English
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: LibriSpeech ASR
|
19 |
+
type: librispeech_asr
|
20 |
+
args: clean
|
21 |
+
metrics:
|
22 |
+
- name: Test WER
|
23 |
+
type: wer
|
24 |
+
value: 12.29
|
25 |
+
- name: Test CER
|
26 |
+
type: cer
|
27 |
+
value: 3.34
|
28 |
+
- task:
|
29 |
+
name: Automatic Speech Recognition
|
30 |
+
type: automatic-speech-recognition
|
31 |
+
dataset:
|
32 |
+
name: Robust Speech Event - Dev Data
|
33 |
+
type: speech-recognition-community-v2/dev_data
|
34 |
+
args: en
|
35 |
+
metrics:
|
36 |
+
- name: Validation WER
|
37 |
+
type: wer
|
38 |
+
value: 36.75
|
39 |
+
- name: Validation CER
|
40 |
+
type: cer
|
41 |
+
value: 14.83
|
42 |
---
|
43 |
|
|
|
|
|
|
|
44 |
#
|
45 |
|
46 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset.
|
|
|
48 |
- Loss: 0.1444
|
49 |
- Wer: 0.1167
|
50 |
|
51 |
+
|
52 |
## Model description
|
53 |
|
54 |
More information needed
|
eval.py
CHANGED
@@ -44,7 +44,7 @@ def log_results(result: Dataset, args: Dict[str, str]):
|
|
44 |
p.write(f"{i}" + "\n")
|
45 |
p.write(batch["prediction"] + "\n")
|
46 |
t.write(f"{i}" + "\n")
|
47 |
-
t.write(batch[
|
48 |
|
49 |
result.map(write_to_file, with_indices=True)
|
50 |
|
@@ -62,11 +62,6 @@ def normalize_text(text: str) -> str:
|
|
62 |
|
63 |
for t in token_sequences_to_ignore:
|
64 |
text = " ".join(text.split(t))
|
65 |
-
|
66 |
-
kakasi = pykakasi.kakasi()
|
67 |
-
tagger = fugashi.Tagger()
|
68 |
-
text = "".join([item['hira'] for item in kakasi.convert(text)])
|
69 |
-
text = " ".join([word.surface for word in tagger(text)])
|
70 |
|
71 |
return text
|
72 |
|
@@ -97,7 +92,7 @@ def main(args):
|
|
97 |
)
|
98 |
|
99 |
batch["prediction"] = prediction["text"]
|
100 |
-
batch["target"] = normalize_text(batch[
|
101 |
return batch
|
102 |
|
103 |
# run inference on all examples
|
@@ -123,6 +118,9 @@ if __name__ == "__main__":
|
|
123 |
parser.add_argument(
|
124 |
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
125 |
)
|
|
|
|
|
|
|
126 |
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
127 |
parser.add_argument(
|
128 |
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
|
|
44 |
p.write(f"{i}" + "\n")
|
45 |
p.write(batch["prediction"] + "\n")
|
46 |
t.write(f"{i}" + "\n")
|
47 |
+
t.write(batch['target'] + "\n")
|
48 |
|
49 |
result.map(write_to_file, with_indices=True)
|
50 |
|
|
|
62 |
|
63 |
for t in token_sequences_to_ignore:
|
64 |
text = " ".join(text.split(t))
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
return text
|
67 |
|
|
|
92 |
)
|
93 |
|
94 |
batch["prediction"] = prediction["text"]
|
95 |
+
batch["target"] = normalize_text(batch[args.sentence_column])
|
96 |
return batch
|
97 |
|
98 |
# run inference on all examples
|
|
|
118 |
parser.add_argument(
|
119 |
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
120 |
)
|
121 |
+
parser.add_argument(
|
122 |
+
"--sentence_column", type=str, required=True, help="Name of column that holds text label"
|
123 |
+
)
|
124 |
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
125 |
parser.add_argument(
|
126 |
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
eval.sh
CHANGED
@@ -1,17 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
./eval.py \
|
2 |
--model_id . \
|
3 |
-
--dataset "
|
4 |
-
--config
|
5 |
-
--split
|
|
|
6 |
--chunk_length_s 5.0 \
|
7 |
--stride_length_s 1.0 \
|
8 |
-
--log_outputs
|
9 |
-
|
10 |
-
# ./eval.py \
|
11 |
-
# --model_id vitouphy/xls-r-300m-ja \
|
12 |
-
# --dataset "speech-recognition-community-v2/dev_data" \
|
13 |
-
# --config ja \
|
14 |
-
# --split validation \
|
15 |
-
# --chunk_length_s 5.0 \
|
16 |
-
# --stride_length_s 1.0 \
|
17 |
-
# --log_outputs
|
|
|
1 |
+
# ./eval.py \
|
2 |
+
# --model_id . \
|
3 |
+
# --dataset "librispeech_asr" \
|
4 |
+
# --config clean \
|
5 |
+
# --split test \
|
6 |
+
# --sentence_column "text" \
|
7 |
+
# --log_outputs
|
8 |
+
|
9 |
./eval.py \
|
10 |
--model_id . \
|
11 |
+
--dataset "speech-recognition-community-v2/dev_data" \
|
12 |
+
--config en \
|
13 |
+
--split validation \
|
14 |
+
--sentence_column "sentence" \
|
15 |
--chunk_length_s 5.0 \
|
16 |
--stride_length_s 1.0 \
|
17 |
+
--log_outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
librispeech_asr_clean_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.12285073037127206
|
2 |
+
CER: 0.033364117500799206
|
log_librispeech_asr_clean_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_librispeech_asr_clean_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_en_validation_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_en_validation_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
speech-recognition-community-v2_dev_data_en_validation_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.36347459029961926
|
2 |
+
CER: 0.14828747083722804
|