anton-l's picture
anton-l HF staff
Upload README.md
b37a8c0
|
raw
history blame
3.27 kB
metadata
language:
  - km
license: apache-2.0
tags:
  - automatic-speech-recognition
  - openslr
  - robust-speech-event
  - km
  - generated_from_trainer
  - hf-asr-leaderboard
model-index:
  - name: xls-r-300m-km
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR km
          type: openslr
          args: km
        metrics:
          - name: Test WER
            type: wer
            value: 25.7
          - name: Test CER
            type: cer
            value: 7.03
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: km
        metrics:
          - name: Test WER
            type: wer
            value: 25.7
          - name: Test CER
            type: cer
            value: 7.03

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the openslr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3281
  • Wer: 0.3462

Evaluation results on OpenSLR "test" (self-split 10%) (Running ./eval.py):

  • WER: 0.3216977389924633
  • CER: 0.08653361193169537

Evaluation results with language model on OpenSLR "test" (self-split 10%) (Running ./eval.py):

  • WER: 0.257040856802856
  • CER: 0.07025001801282513

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.0795 5.47 400 4.4121 1.0
3.5658 10.95 800 3.5203 1.0
3.3689 16.43 1200 2.8984 0.9996
2.01 21.91 1600 1.0041 0.7288
1.6783 27.39 2000 0.6941 0.5989
1.527 32.87 2400 0.5599 0.5282
1.4278 38.35 2800 0.4827 0.4806
1.3458 43.83 3200 0.4429 0.4532
1.2893 49.31 3600 0.4156 0.4330
1.2441 54.79 4000 0.4020 0.4040
1.188 60.27 4400 0.3777 0.3866
1.1628 65.75 4800 0.3607 0.3858
1.1324 71.23 5200 0.3534 0.3604
1.0969 76.71 5600 0.3428 0.3624
1.0897 82.19 6000 0.3387 0.3567
1.0625 87.66 6400 0.3339 0.3499
1.0601 93.15 6800 0.3288 0.3446
1.0474 98.62 7200 0.3281 0.3462

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0