|
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-en](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-en): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-en-trimmed-en-10000` |
|
This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-en](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-en) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. |
|
Following table shows a summary of the trimming process. |
|
|
|
| | cardiffnlp/xlm-roberta-base-tweet-sentiment-en | vocabtrimmer/xlm-roberta-base-tweet-sentiment-en-trimmed-en-10000 | |
|
|:---------------------------|:-------------------------------------------------|:--------------------------------------------------------------------| |
|
| parameter_size_full | 278,045,955 | 93,725,955 | |
|
| parameter_size_embedding | 192,001,536 | 7,681,536 | |
|
| vocab_size | 250,002 | 10,002 | |
|
| compression_rate_full | 100.0 | 33.71 | |
|
| compression_rate_embedding | 100.0 | 4.0 | |
|
|
|
|
|
Following table shows the parameter used to trim vocabulary. |
|
|
|
| language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |
|
|:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| |
|
| en | vocabtrimmer/mc4_validation | text | en | validation | 10000 | 2 | |