vumichien's picture
Update README.md
aa9edca
|
raw
history blame
5.55 kB
metadata
license: apache-2.0
language:
  - ja
tags:
  - automatic-speech-recognition
  - robust-speech-event
  - common-voice
  - ja
model-index:
  - name: wav2vec2-xls-r-1b
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7.0
          type: mozilla-foundation/common_voice_7_0
          args: ja
        metrics:
          - name: Test WER (with LM)
            type: wer
            value: 7.98
          - name: Test CER (with LM)
            type: cer
            value: 3.42
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8.0
          type: mozilla-foundation/common_voice_8_0
          args: ja
        metrics:
          - name: Test WER (with LM)
            type: wer
            value: 7.88
          - name: Test CER (with LM)
            type: cer
            value: 3.35
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: ja
        metrics:
          - name: Test WER (with LM)
            type: wer
            value: 28.07
          - name: Test CER (with LM)
            type: cer
            value: 16.27

Model description

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on my collection of Public Japanese Voice datasets for research Common Voice 7.0, JUST (Japanese speech corpus of Saruwatari-lab., University of Tokyo), JSSS (Japanese speech corpus for summarization and simplification), CSS10 (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10.

Benchmark WER result:

COMMON VOICE 7.0 COMMON VOICE 8.0
without LM 10.96 10.91
with 4-grams LM 7.98 7.88

Benchmark CER result:

COMMON VOICE 7.0 COMMON VOICE 8.0
without LM 4.28 4.22
with 4-grams LM 3.42 3.35

Evaluation

Please use the eval.py file to run the evaluation:

python eval.py --model_id vutankiet2901/wav2vec2-large-xlsr-53-ja --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.2896 3.37 1500 0.4748 0.4013 0.1767
1.1608 6.74 3000 0.3350 0.3159 0.1456
1.1042 10.11 4500 0.3119 0.2971 0.1400
1.0494 13.48 6000 0.2974 0.2867 0.1353
1.0061 16.85 7500 0.2802 0.2746 0.1300
0.9629 20.22 9000 0.2844 0.2776 0.1326
0.9267 23.59 10500 0.2577 0.2603 0.1255
0.8984 26.96 12000 0.2508 0.2531 0.1226
0.8729 30.34 13500 0.2629 0.2606 0.1254
0.8546 33.71 15000 0.2402 0.2447 0.1193
0.8304 37.08 16500 0.2532 0.2472 0.1209
0.8075 40.45 18000 0.2439 0.2469 0.1198
0.7827 43.82 19500 0.2387 0.2372 0.1167
0.7627 47.19 21000 0.2344 0.2331 0.1147
0.7402 50.56 22500 0.2314 0.2299 0.1135
0.718 53.93 24000 0.2257 0.2267 0.1114
0.7016 57.3 25500 0.2204 0.2184 0.1089
0.6804 60.67 27000 0.2227 0.2181 0.1085
0.6625 64.04 28500 0.2138 0.2112 0.1058
0.6465 67.42 30000 0.2141 0.2081 0.1044
0.6238 70.79 31500 0.2172 0.2082 0.1050
0.6062 74.16 33000 0.2174 0.2058 0.1043
0.588 77.53 34500 0.2156 0.2034 0.1027
0.5722 80.9 36000 0.2162 0.2032 0.1029
0.5585 84.27 37500 0.2156 0.2022 0.1021
0.5456 87.64 39000 0.2126 0.1993 0.1009
0.5325 91.01 40500 0.2121 0.1966 0.1003
0.5229 94.38 42000 0.2104 0.1941 0.0991
0.5134 97.75 43500 0.2108 0.1948 0.0992

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0