w11wo's picture
End of training
cd1d150 verified
|
raw
history blame
2.95 kB
metadata
license: mit
base_model: flax-community/indonesian-roberta-base
tags:
  - generated_from_trainer
datasets:
  - indonlu
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: indonesian-roberta-base-nerp-tagging
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: indonlu
          type: indonlu
          config: nerp
          split: validation
          args: nerp
        metrics:
          - name: Precision
            type: precision
            value: 0.8102477477477478
          - name: Recall
            type: recall
            value: 0.8107042253521127
          - name: F1
            type: f1
            value: 0.8104759222754154
          - name: Accuracy
            type: accuracy
            value: 0.9615076182838813

indonesian-roberta-base-nerp-tagging

This model is a fine-tuned version of flax-community/indonesian-roberta-base on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1180
  • Precision: 0.8102
  • Recall: 0.8107
  • F1: 0.8105
  • Accuracy: 0.9615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 420 0.1419 0.7491 0.8034 0.7753 0.9551
0.2261 2.0 840 0.1317 0.7889 0.7983 0.7936 0.9569
0.1081 3.0 1260 0.1430 0.7587 0.8300 0.7927 0.9546
0.0777 4.0 1680 0.1459 0.7848 0.8266 0.8052 0.9577
0.0563 5.0 2100 0.1525 0.7923 0.8125 0.8022 0.9579
0.0441 6.0 2520 0.1552 0.7986 0.8176 0.8080 0.9584
0.0441 7.0 2940 0.1692 0.7910 0.8232 0.8068 0.9584
0.0387 8.0 3360 0.1677 0.7894 0.8306 0.8095 0.9588
0.032 9.0 3780 0.1784 0.7939 0.8249 0.8091 0.9586
0.0284 10.0 4200 0.1817 0.7950 0.8261 0.8102 0.9588

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.1