b1ade-embed-kd
This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was distilled with teacher model as
and student model as b1ade-embed
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 275105 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MSELoss.MSELoss
Parameters of the fit()-Method:
{
"epochs": 3,
"evaluation_steps": 5000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 5e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Results:
Good agreement with teacher model, at least on STS:
Teacher:
2024-05-20 16:29:07 - Teacher Performance:
2024-05-20 16:29:07 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset:
2024-05-20 16:29:12 - Cosine-Similarity : Pearson: 0.8561 Spearman: 0.8597
2024-05-20 16:29:12 - Manhattan-Distance: Pearson: 0.8569 Spearman: 0.8567
2024-05-20 16:29:12 - Euclidean-Distance: Pearson: 0.8575 Spearman: 0.8571
2024-05-20 16:29:12 - Dot-Product-Similarity: Pearson: 0.8624 Spearman: 0.8662
Student:
2024-05-20 16:29:12 - Student Performance:
2024-05-20 16:29:12 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset:
2024-05-20 16:29:17 - Cosine-Similarity : Pearson: 0.8561 Spearman: 0.8597
2024-05-20 16:29:17 - Manhattan-Distance: Pearson: 0.8569 Spearman: 0.8567
2024-05-20 16:29:17 - Euclidean-Distance: Pearson: 0.8575 Spearman: 0.8571
2024-05-20 16:29:17 - Dot-Product-Similarity: Pearson: 0.8624 Spearman: 0.8662
- Downloads last month
- 206
Spaces using w601sxs/b1ade-embed-kd 3
Collection including w601sxs/b1ade-embed-kd
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassificationtest set self-reported75.817
- ap on MTEB AmazonCounterfactualClassificationtest set self-reported23.581
- f1 on MTEB AmazonCounterfactualClassificationtest set self-reported62.546
- accuracy on MTEB AmazonPolarityClassificationtest set self-reported80.300
- ap on MTEB AmazonPolarityClassificationtest set self-reported74.268
- f1 on MTEB AmazonPolarityClassificationtest set self-reported80.216
- accuracy on MTEB AmazonReviewsClassificationtest set self-reported43.084
- f1 on MTEB AmazonReviewsClassificationtest set self-reported42.668
- map_at_1 on MTEB ArguAnatest set self-reported29.232
- map_at_10 on MTEB ArguAnatest set self-reported45.777