cv_summarization-t5-small
This model is a fine-tuned version of gopalkalpande/t5-small-finetuned-bbc-news-summarization on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.8053
- Validation Loss: 0.7027
- Train Rougel: tf.Tensor(0.3339088, shape=(), dtype=float32)
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Rougel | Epoch |
---|---|---|---|
1.9068 | 1.5592 | tf.Tensor(0.31806523, shape=(), dtype=float32) | 0 |
1.6027 | 1.3316 | tf.Tensor(0.30698553, shape=(), dtype=float32) | 1 |
1.4177 | 1.1818 | tf.Tensor(0.30701882, shape=(), dtype=float32) | 2 |
1.2744 | 1.0718 | tf.Tensor(0.30627215, shape=(), dtype=float32) | 3 |
1.1618 | 0.9846 | tf.Tensor(0.3005299, shape=(), dtype=float32) | 4 |
1.0575 | 0.9088 | tf.Tensor(0.2958022, shape=(), dtype=float32) | 5 |
0.9764 | 0.8441 | tf.Tensor(0.30608675, shape=(), dtype=float32) | 6 |
0.9196 | 0.7895 | tf.Tensor(0.31722832, shape=(), dtype=float32) | 7 |
0.8478 | 0.7411 | tf.Tensor(0.3254477, shape=(), dtype=float32) | 8 |
0.8053 | 0.7027 | tf.Tensor(0.3339088, shape=(), dtype=float32) | 9 |
Framework versions
- Transformers 4.30.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 64
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.