segformer-b3

This model is a fine-tuned version of nvidia/mit-b3 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7826
  • Mean Iou: 0.3995
  • Mean Accuracy: 0.4977
  • Overall Accuracy: 0.8759
  • Accuracy Unlabeled: nan
  • Accuracy Flat-road: 0.9069
  • Accuracy Flat-sidewalk: 0.9471
  • Accuracy Flat-crosswalk: 0.5043
  • Accuracy Flat-cyclinglane: 0.8684
  • Accuracy Flat-parkingdriveway: 0.5057
  • Accuracy Flat-railtrack: 0.0
  • Accuracy Flat-curb: 0.7351
  • Accuracy Human-person: 0.8662
  • Accuracy Human-rider: 0.2599
  • Accuracy Vehicle-car: 0.9494
  • Accuracy Vehicle-truck: 0.1607
  • Accuracy Vehicle-bus: 0.0044
  • Accuracy Vehicle-tramtrain: 0.1992
  • Accuracy Vehicle-motorcycle: 0.0
  • Accuracy Vehicle-bicycle: 0.7913
  • Accuracy Vehicle-caravan: 0.4628
  • Accuracy Vehicle-cartrailer: 0.0106
  • Accuracy Construction-building: 0.9117
  • Accuracy Construction-door: 0.2679
  • Accuracy Construction-wall: 0.6351
  • Accuracy Construction-fenceguardrail: 0.5893
  • Accuracy Construction-bridge: 0.5639
  • Accuracy Construction-tunnel: nan
  • Accuracy Construction-stairs: 0.4246
  • Accuracy Object-pole: 0.6323
  • Accuracy Object-trafficsign: 0.4266
  • Accuracy Object-trafficlight: 0.2431
  • Accuracy Nature-vegetation: 0.9540
  • Accuracy Nature-terrain: 0.8819
  • Accuracy Sky: 0.9827
  • Accuracy Void-ground: 0.0045
  • Accuracy Void-dynamic: 0.2006
  • Accuracy Void-static: 0.5328
  • Accuracy Void-unclear: 0.0
  • Iou Unlabeled: 0.0
  • Iou Flat-road: 0.7947
  • Iou Flat-sidewalk: 0.8656
  • Iou Flat-crosswalk: 0.4529
  • Iou Flat-cyclinglane: 0.6876
  • Iou Flat-parkingdriveway: 0.4461
  • Iou Flat-railtrack: 0.0
  • Iou Flat-curb: 0.5989
  • Iou Human-person: 0.6127
  • Iou Human-rider: 0.2346
  • Iou Vehicle-car: 0.8877
  • Iou Vehicle-truck: 0.0662
  • Iou Vehicle-bus: 0.0044
  • Iou Vehicle-tramtrain: 0.1985
  • Iou Vehicle-motorcycle: 0.0
  • Iou Vehicle-bicycle: 0.5765
  • Iou Vehicle-caravan: 0.1495
  • Iou Vehicle-cartrailer: 0.0106
  • Iou Construction-building: 0.8060
  • Iou Construction-door: 0.2190
  • Iou Construction-wall: 0.5015
  • Iou Construction-fenceguardrail: 0.4923
  • Iou Construction-bridge: 0.3467
  • Iou Construction-tunnel: nan
  • Iou Construction-stairs: 0.3908
  • Iou Object-pole: 0.4693
  • Iou Object-trafficsign: 0.3698
  • Iou Object-trafficlight: 0.2052
  • Iou Nature-vegetation: 0.8832
  • Iou Nature-terrain: 0.7906
  • Iou Sky: 0.9519
  • Iou Void-ground: 0.0038
  • Iou Void-dynamic: 0.1774
  • Iou Void-static: 0.3885
  • Iou Void-unclear: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Flat-road Accuracy Flat-sidewalk Accuracy Flat-crosswalk Accuracy Flat-cyclinglane Accuracy Flat-parkingdriveway Accuracy Flat-railtrack Accuracy Flat-curb Accuracy Human-person Accuracy Human-rider Accuracy Vehicle-car Accuracy Vehicle-truck Accuracy Vehicle-bus Accuracy Vehicle-tramtrain Accuracy Vehicle-motorcycle Accuracy Vehicle-bicycle Accuracy Vehicle-caravan Accuracy Vehicle-cartrailer Accuracy Construction-building Accuracy Construction-door Accuracy Construction-wall Accuracy Construction-fenceguardrail Accuracy Construction-bridge Accuracy Construction-tunnel Accuracy Construction-stairs Accuracy Object-pole Accuracy Object-trafficsign Accuracy Object-trafficlight Accuracy Nature-vegetation Accuracy Nature-terrain Accuracy Sky Accuracy Void-ground Accuracy Void-dynamic Accuracy Void-static Accuracy Void-unclear Iou Unlabeled Iou Flat-road Iou Flat-sidewalk Iou Flat-crosswalk Iou Flat-cyclinglane Iou Flat-parkingdriveway Iou Flat-railtrack Iou Flat-curb Iou Human-person Iou Human-rider Iou Vehicle-car Iou Vehicle-truck Iou Vehicle-bus Iou Vehicle-tramtrain Iou Vehicle-motorcycle Iou Vehicle-bicycle Iou Vehicle-caravan Iou Vehicle-cartrailer Iou Construction-building Iou Construction-door Iou Construction-wall Iou Construction-fenceguardrail Iou Construction-bridge Iou Construction-tunnel Iou Construction-stairs Iou Object-pole Iou Object-trafficsign Iou Object-trafficlight Iou Nature-vegetation Iou Nature-terrain Iou Sky Iou Void-ground Iou Void-dynamic Iou Void-static Iou Void-unclear
0.7275 2.5 500 0.5765 0.3050 0.3654 0.8441 nan 0.9561 0.9153 0.3719 0.7164 0.4360 0.0 0.3475 0.8270 0.0 0.9318 0.0 0.0 0.0 0.0 0.6843 0.0 0.0 0.9160 0.0667 0.3893 0.6512 0.0 nan 0.0 0.5447 0.0525 0.0 0.9581 0.8185 0.9737 0.0 0.0262 0.4752 0.0 nan 0.7208 0.8407 0.3582 0.6393 0.3693 0.0 0.2705 0.5291 0.0 0.8548 0.0 0.0 0.0 0.0 0.5158 0.0 0.0 0.7684 0.0638 0.3606 0.4620 0.0 nan 0.0 0.3805 0.0522 0.0 0.8572 0.7657 0.9225 0.0 0.0256 0.3078 0.0
0.3654 5.0 1000 0.5265 0.3531 0.4276 0.8622 nan 0.9116 0.9476 0.4986 0.8194 0.4632 0.0 0.5613 0.8672 0.1407 0.9399 0.2129 0.0 0.0 0.0 0.7640 0.0 0.0 0.8915 0.1468 0.5813 0.5719 0.0 nan 0.3336 0.5583 0.4068 0.0 0.9470 0.8512 0.9780 0.0004 0.1935 0.5228 0.0 nan 0.7904 0.8491 0.4455 0.6935 0.4013 0.0 0.4607 0.5435 0.1227 0.8663 0.1019 0.0 0.0 0.0 0.5464 0.0 0.0 0.7740 0.1198 0.4746 0.4587 0.0 nan 0.2403 0.4036 0.2949 0.0 0.8663 0.7614 0.9334 0.0003 0.1492 0.3544 0.0
0.2359 7.5 1500 0.5790 0.3584 0.4296 0.8649 nan 0.8646 0.9501 0.4466 0.8506 0.5513 0.0 0.7099 0.8317 0.2099 0.9442 0.2546 0.0 0.0 0.0 0.7862 0.0087 0.0 0.9079 0.1046 0.6479 0.5239 0.0 nan 0.1543 0.5674 0.3864 0.0 0.9461 0.8753 0.9776 0.0000 0.1974 0.4793 0.0 nan 0.7917 0.8414 0.4214 0.7012 0.4494 0.0 0.5333 0.5888 0.1897 0.8663 0.1009 0.0 0.0 0.0 0.5427 0.0042 0.0 0.7817 0.0945 0.4696 0.4312 0.0 nan 0.1477 0.4314 0.3152 0.0 0.8749 0.7719 0.9409 0.0000 0.1780 0.3593 0.0
0.1708 10.0 2000 0.6066 0.3684 0.4479 0.8666 nan 0.8819 0.9466 0.5609 0.8324 0.4835 0.0 0.7200 0.8575 0.1404 0.9422 0.2656 0.0 0.0590 0.0 0.7505 0.2619 0.0 0.8906 0.2203 0.6425 0.5323 0.0 nan 0.3455 0.5923 0.4085 0.0 0.9552 0.8844 0.9791 0.0024 0.0951 0.5293 0.0 nan 0.7930 0.8537 0.4562 0.6519 0.4311 0.0 0.5478 0.5960 0.1301 0.8728 0.1051 0.0 0.0590 0.0 0.5390 0.0916 0.0 0.7864 0.1779 0.4949 0.4467 0.0 nan 0.3107 0.4336 0.3289 0.0 0.8757 0.7694 0.9416 0.0019 0.0893 0.3741 0.0
0.1326 12.5 2500 0.5934 0.3969 0.4877 0.8753 nan 0.9227 0.9490 0.4762 0.8499 0.5255 0.0 0.6941 0.8115 0.3960 0.9430 0.3828 0.0266 0.0998 0.0 0.7963 0.6565 0.0003 0.8988 0.2880 0.6352 0.5442 0.2746 nan 0.3048 0.6133 0.4269 0.0 0.9483 0.9064 0.9838 0.0025 0.2297 0.5070 0.0 nan 0.8032 0.8631 0.4521 0.7678 0.4440 0.0 0.5593 0.6096 0.2994 0.8777 0.1308 0.0266 0.0998 0.0 0.5663 0.2016 0.0003 0.7931 0.1957 0.4838 0.4475 0.2094 nan 0.2849 0.4530 0.3424 0.0 0.8798 0.7777 0.9441 0.0023 0.1979 0.3857 0.0
0.1116 15.0 3000 0.6267 0.3978 0.4820 0.8734 nan 0.9155 0.9431 0.5145 0.8423 0.4973 0.0 0.7284 0.8513 0.3146 0.9492 0.0753 0.0 0.2565 0.0 0.7845 0.3853 0.0220 0.8998 0.2497 0.6306 0.5571 0.3186 nan 0.4912 0.5902 0.4795 0.0 0.9501 0.9004 0.9843 0.0038 0.2017 0.5677 0.0 nan 0.8037 0.8591 0.4665 0.7147 0.4311 0.0 0.5698 0.5996 0.2693 0.8800 0.0366 0.0 0.2554 0.0 0.5526 0.1200 0.0216 0.7935 0.1949 0.4853 0.4704 0.2116 nan 0.3980 0.4450 0.3691 0.0 0.8815 0.7857 0.9439 0.0031 0.1751 0.3899 0.0
0.098 17.5 3500 0.6334 0.3922 0.5006 0.8729 nan 0.8961 0.9419 0.5747 0.8862 0.4977 0.0 0.7428 0.8491 0.3477 0.9464 0.0952 0.0 0.2937 0.0 0.7908 0.7738 0.0 0.8934 0.2479 0.6445 0.6108 0.4273 nan 0.4435 0.6190 0.4308 0.0015 0.9486 0.9026 0.9818 0.0099 0.2216 0.4994 0.0 0.0 0.7961 0.8651 0.5005 0.6765 0.4413 0.0 0.5751 0.6176 0.2944 0.8811 0.0373 0.0 0.2919 0.0 0.5578 0.2307 0.0 0.7961 0.1835 0.4901 0.4814 0.2506 nan 0.3771 0.4560 0.3562 0.0015 0.8810 0.7806 0.9474 0.0077 0.1823 0.3784 0.0
0.0894 20.0 4000 0.6973 0.3988 0.4923 0.8722 nan 0.8952 0.9456 0.5309 0.8357 0.4777 0.0 0.7630 0.8291 0.2785 0.9467 0.1712 0.0047 0.1377 0.0 0.7854 0.8237 0.0 0.9282 0.1899 0.5904 0.6020 0.4761 nan 0.3323 0.6192 0.4047 0.1381 0.9522 0.8851 0.9767 0.0050 0.1916 0.5277 0.0 nan 0.8062 0.8543 0.4692 0.6675 0.4204 0.0 0.5710 0.6083 0.2366 0.8855 0.0677 0.0046 0.1374 0.0 0.5492 0.2453 0.0 0.7996 0.1571 0.4887 0.4847 0.2656 nan 0.3148 0.4670 0.3491 0.1264 0.8815 0.7829 0.9496 0.0043 0.1718 0.3936 0.0
0.0819 22.5 4500 0.6867 0.4098 0.5001 0.8778 nan 0.9344 0.9410 0.5690 0.8783 0.4856 0.0 0.7065 0.8495 0.2085 0.9415 0.1530 0.0018 0.2354 0.0 0.7829 0.7796 0.0 0.9044 0.2261 0.6171 0.6045 0.4780 nan 0.4156 0.6265 0.4288 0.1457 0.9563 0.8877 0.9804 0.0064 0.2136 0.5447 0.0 nan 0.8016 0.8702 0.4902 0.7597 0.4279 0.0 0.5780 0.6123 0.1998 0.8889 0.0577 0.0018 0.2348 0.0 0.5898 0.2436 0.0 0.7992 0.1842 0.4829 0.4918 0.2855 nan 0.3732 0.4658 0.3650 0.1297 0.8823 0.7837 0.9500 0.0053 0.1841 0.3839 0.0
0.0767 25.0 5000 0.7377 0.4096 0.5109 0.8720 nan 0.8599 0.9464 0.5724 0.9354 0.4838 0.0 0.7392 0.8475 0.2679 0.9530 0.2438 0.0 0.2405 0.0 0.7879 0.8364 0.0 0.9155 0.2107 0.5924 0.5901 0.5525 nan 0.3980 0.6229 0.4648 0.2165 0.9550 0.8865 0.9823 0.0047 0.1970 0.5557 0.0 nan 0.7881 0.8643 0.5042 0.6317 0.4280 0.0 0.5817 0.6075 0.2397 0.8857 0.1052 0.0 0.2384 0.0 0.5664 0.2501 0.0 0.8056 0.1813 0.4878 0.4863 0.2871 nan 0.3652 0.4725 0.3883 0.1660 0.8804 0.7905 0.9503 0.0040 0.1704 0.3891 0.0
0.0725 27.5 5500 0.7085 0.3977 0.5056 0.8782 nan 0.9177 0.9482 0.4916 0.8966 0.4989 0.0 0.7119 0.8469 0.2483 0.9512 0.2387 0.0440 0.1287 0.0 0.7947 0.8184 0.0 0.9152 0.2257 0.6472 0.5963 0.5426 nan 0.3951 0.6422 0.4369 0.2195 0.9499 0.8824 0.9821 0.0036 0.1824 0.5266 0.0 0.0 0.8109 0.8638 0.4498 0.7314 0.4437 0.0 0.5797 0.6047 0.2215 0.8861 0.0855 0.0430 0.1284 0.0 0.5657 0.2395 0.0 0.8058 0.1939 0.5113 0.4913 0.2943 nan 0.3732 0.4773 0.3770 0.1643 0.8836 0.7864 0.9509 0.0029 0.1639 0.3905 0.0
0.0685 30.0 6000 0.7388 0.4115 0.5051 0.8738 nan 0.9135 0.9420 0.5290 0.8405 0.4909 0.0 0.7408 0.8566 0.3161 0.9461 0.1138 0.0003 0.1616 0.0 0.8061 0.7486 0.0001 0.9074 0.2986 0.6418 0.5669 0.4769 nan 0.4607 0.6454 0.4717 0.2320 0.9531 0.8849 0.9802 0.0037 0.1983 0.5417 0.0 nan 0.7911 0.8647 0.4671 0.6651 0.4361 0.0 0.5848 0.6127 0.2642 0.8885 0.0453 0.0003 0.1613 0.0 0.5455 0.2421 0.0001 0.8022 0.2382 0.4975 0.4741 0.3279 nan 0.4050 0.4789 0.3937 0.1921 0.8825 0.7873 0.9516 0.0032 0.1809 0.3970 0.0
0.0654 32.5 6500 0.7246 0.4128 0.5034 0.8789 nan 0.9247 0.9424 0.5865 0.8579 0.5105 0.0 0.7409 0.8799 0.2449 0.9462 0.0922 0.0 0.1728 0.0 0.7762 0.7085 0.0 0.9151 0.2459 0.6278 0.6088 0.5426 nan 0.4260 0.6444 0.4471 0.2230 0.9530 0.8839 0.9833 0.0040 0.1978 0.5251 0.0 nan 0.8010 0.8705 0.5132 0.7193 0.4466 0.0 0.5906 0.5971 0.2204 0.8884 0.0419 0.0 0.1724 0.0 0.5623 0.2184 0.0 0.8044 0.2015 0.5037 0.4964 0.3206 nan 0.4032 0.4828 0.3859 0.1802 0.8828 0.7909 0.9505 0.0033 0.1792 0.3959 0.0
0.0629 35.0 7000 0.7655 0.4168 0.5105 0.8741 nan 0.8961 0.9470 0.5214 0.8906 0.4982 0.0 0.7542 0.8631 0.2754 0.9512 0.1882 0.0015 0.3457 0.0 0.7778 0.6418 0.0144 0.8908 0.2816 0.6612 0.5910 0.5330 nan 0.4434 0.6305 0.4273 0.2421 0.9516 0.8805 0.9821 0.0036 0.2172 0.5444 0.0 nan 0.7981 0.8672 0.4665 0.6765 0.4364 0.0 0.5934 0.6114 0.2489 0.8877 0.0831 0.0013 0.3436 0.0 0.5668 0.2017 0.0140 0.7928 0.2283 0.4708 0.4904 0.3458 nan 0.4011 0.4722 0.3699 0.1843 0.8836 0.7898 0.9516 0.0030 0.1851 0.3897 0.0
0.0607 37.5 7500 0.7668 0.4180 0.5139 0.8751 nan 0.8948 0.9480 0.5612 0.8579 0.4903 0.0 0.7432 0.8676 0.2619 0.9495 0.1718 0.0165 0.3359 0.0010 0.7738 0.7077 0.0304 0.9104 0.2826 0.6353 0.6045 0.5609 nan 0.4406 0.6293 0.4355 0.2376 0.9511 0.8940 0.9818 0.0033 0.2277 0.5530 0.0 nan 0.7933 0.8676 0.4914 0.6562 0.4327 0.0 0.5956 0.6059 0.2348 0.8875 0.0739 0.0161 0.3343 0.0010 0.5696 0.2086 0.0295 0.8084 0.2268 0.5014 0.4962 0.3297 nan 0.3948 0.4702 0.3754 0.1918 0.8836 0.7857 0.9519 0.0029 0.1886 0.3900 0.0
0.0582 40.0 8000 0.7562 0.4049 0.5074 0.8780 nan 0.9204 0.9463 0.5052 0.8643 0.5082 0.0 0.7360 0.8650 0.2462 0.9501 0.1893 0.0024 0.2403 0.0 0.7814 0.6631 0.0242 0.9169 0.2821 0.6356 0.5984 0.5609 nan 0.4218 0.6299 0.4414 0.2421 0.9504 0.8835 0.9796 0.0043 0.2138 0.5395 0.0 0.0 0.8004 0.8683 0.4553 0.7073 0.4478 0.0 0.6007 0.6132 0.2291 0.8882 0.0839 0.0024 0.2391 0.0 0.5777 0.2020 0.0237 0.8060 0.2276 0.5058 0.4990 0.3415 nan 0.3905 0.4699 0.3815 0.1952 0.8837 0.7908 0.9522 0.0036 0.1849 0.3941 0.0
0.0565 42.5 8500 0.7834 0.4004 0.5024 0.8762 nan 0.8960 0.9474 0.5430 0.8894 0.4937 0.0 0.7492 0.8696 0.2727 0.9482 0.1505 0.0006 0.1868 0.0 0.7945 0.5042 0.0051 0.9155 0.2834 0.6369 0.5958 0.5811 nan 0.4136 0.6419 0.4457 0.2481 0.9510 0.8887 0.9822 0.0041 0.2054 0.5358 0.0 0.0 0.7955 0.8676 0.4613 0.6877 0.4390 0.0 0.6023 0.6092 0.2503 0.8879 0.0626 0.0006 0.1860 0.0 0.5802 0.1628 0.0051 0.8061 0.2307 0.5003 0.4961 0.3290 nan 0.3820 0.4752 0.3819 0.2070 0.8838 0.7914 0.9520 0.0034 0.1813 0.3944 0.0
0.0562 45.0 9000 0.7812 0.4015 0.5008 0.8772 nan 0.9064 0.9466 0.5058 0.8872 0.5059 0.0 0.7482 0.8642 0.2957 0.9489 0.1494 0.0059 0.1674 0.0003 0.8079 0.4484 0.0122 0.9134 0.2785 0.6303 0.6007 0.5723 nan 0.4337 0.6286 0.4291 0.2541 0.9521 0.8902 0.9821 0.0054 0.2097 0.5444 0.0 0.0 0.7954 0.8685 0.4597 0.7046 0.4471 0.0 0.6024 0.6174 0.2611 0.8881 0.0630 0.0057 0.1667 0.0003 0.5844 0.1441 0.0120 0.8059 0.2279 0.5021 0.4963 0.3439 nan 0.3981 0.4694 0.3714 0.2134 0.8841 0.7883 0.9522 0.0044 0.1836 0.3913 0.0
0.0547 47.5 9500 0.7899 0.3997 0.4971 0.8759 nan 0.9053 0.9472 0.4999 0.8752 0.5002 0.0 0.7334 0.8557 0.2947 0.9505 0.1326 0.0 0.1843 0.0 0.8065 0.3995 0.0184 0.9146 0.2650 0.6301 0.6056 0.5749 nan 0.4294 0.6299 0.4450 0.2461 0.9515 0.8854 0.9825 0.0044 0.2045 0.5311 0.0000 0.0 0.7939 0.8655 0.4530 0.6865 0.4427 0.0 0.5983 0.6206 0.2592 0.8881 0.0597 0.0 0.1837 0.0 0.5769 0.1272 0.0183 0.8055 0.2174 0.5004 0.4960 0.3457 nan 0.3926 0.4724 0.3800 0.2072 0.8841 0.7912 0.9522 0.0037 0.1789 0.3895 0.0000
0.0543 50.0 10000 0.7826 0.3995 0.4977 0.8759 nan 0.9069 0.9471 0.5043 0.8684 0.5057 0.0 0.7351 0.8662 0.2599 0.9494 0.1607 0.0044 0.1992 0.0 0.7913 0.4628 0.0106 0.9117 0.2679 0.6351 0.5893 0.5639 nan 0.4246 0.6323 0.4266 0.2431 0.9540 0.8819 0.9827 0.0045 0.2006 0.5328 0.0 0.0 0.7947 0.8656 0.4529 0.6876 0.4461 0.0 0.5989 0.6127 0.2346 0.8877 0.0662 0.0044 0.1985 0.0 0.5765 0.1495 0.0106 0.8060 0.2190 0.5015 0.4923 0.3467 nan 0.3908 0.4693 0.3698 0.2052 0.8832 0.7906 0.9519 0.0038 0.1774 0.3885 0.0

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wang1215/segformer-b3

Base model

nvidia/mit-b3
Finetuned
(12)
this model