FinLoRA Adapters: 8bit Quantization, Rank 8 (DoRA)
Collection
7 items
โข
Updated
axolotl version: 0.9.0
base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
datasets:
- path: /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl
type:
system_prompt: ''
field_system: system
field_instruction: context
field_output: target
format: '[INST] {instruction} [/INST]'
no_input_format: '[INST] {instruction} [/INST]'
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/sentiment_llama_3_1_8b_8bits_r8_dora
peft_use_dora: true
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: sentiment_llama_3_1_8b_8bits_r8_dora
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
chat_template: llama3
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0009 | 1 | 3.5692 |
No log | 0.2501 | 279 | 0.2230 |
0.3199 | 0.5002 | 558 | 0.2184 |
0.3199 | 0.7503 | 837 | 0.2165 |
0.1394 | 1.0 | 1116 | 0.2170 |
0.1394 | 1.2501 | 1395 | 0.2199 |
0.1131 | 1.5002 | 1674 | 0.2147 |
0.1131 | 1.7503 | 1953 | 0.2127 |
0.1025 | 2.0 | 2232 | 0.2116 |
0.0891 | 2.2501 | 2511 | 0.2160 |
0.0891 | 2.5002 | 2790 | 0.2112 |
0.0821 | 2.7503 | 3069 | 0.2111 |
0.0821 | 3.0 | 3348 | 0.2084 |
0.0768 | 3.2501 | 3627 | 0.2164 |
0.0768 | 3.5002 | 3906 | 0.2119 |
0.0681 | 3.7503 | 4185 | 0.2111 |