w_calf_01B / model.py
wangerniu's picture
Upload Calf
f8ad943 verified
import math
import struct
import inspect
import time
from .LMConfig import LMConfig
from typing import Any, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return pos_cis
def apply_rotary_emb(xq, xk, pos_cis):
def unite_shape(pos_cis, x):
ndim = x.ndim
assert 0 <= 1 < ndim
assert pos_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return pos_cis.view(*shape)
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
pos_cis = unite_shape(pos_cis, xq_)
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: LMConfig):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
self.n_local_heads = args.n_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.k_cache, self.v_cache = None, None
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x: torch.Tensor, pos_cis: torch.Tensor, kv_cache=False):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
# 更高效的kv_cache实现
if kv_cache and self.eval():
if seqlen == 1 and all(cache is not None for cache in (self.k_cache, self.v_cache)):
xk = torch.cat((self.k_cache, xk), dim=1)
xv = torch.cat((self.v_cache, xv), dim=1)
self.k_cache, self.v_cache = xk, xv
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
if self.flash and seqlen != 1:
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True)
else:
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
output = self.wo(output)
output = self.resid_dropout(output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
super().__init__()
if hidden_dim is None:
hidden_dim = 4 * dim
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class MoEGate(nn.Module):
def __init__(self, config: LMConfig):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
self.scoring_func = config.scoring_func
self.alpha = config.aux_loss_alpha
self.seq_aux = config.seq_aux
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
self.reset_parameters()
def reset_parameters(self) -> None:
import torch.nn.init as init
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, self.weight, None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
if self.training and self.alpha > 0.0:
scores_for_aux = scores
aux_topk = self.top_k
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
if self.seq_aux:
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
ce.scatter_add_(1, topk_idx_for_aux_loss,
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
seq_len * aux_topk / self.n_routed_experts)
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
else:
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
ce = mask_ce.float().mean(0)
Pi = scores_for_aux.mean(0)
fi = ce * self.n_routed_experts
aux_loss = (Pi * fi).sum() * self.alpha
else:
aux_loss = None
return topk_idx, topk_weight, aux_loss
class MOEFeedForward(nn.Module):
def __init__(self, config: LMConfig):
super().__init__()
self.config = config
self.experts = nn.ModuleList([
FeedForward(
dim=config.dim,
hidden_dim=config.hidden_dim,
multiple_of=config.multiple_of,
dropout=config.dropout,
)
for _ in range(config.n_routed_experts)
])
self.gate = MoEGate(config)
if config.n_shared_experts is not None:
self.shared_experts = FeedForward(
dim=config.dim,
hidden_dim=config.hidden_dim,
multiple_of=config.multiple_of,
dropout=config.dropout,
)
def forward(self, x):
identity = x
orig_shape = x.shape
bsz, seq_len, _ = x.shape
# 使用门控机制选择专家
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
# 训练模式下,重复输入数据
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
y = torch.empty_like(x, dtype=torch.float16)
for i, expert in enumerate(self.experts):
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i])
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape)
else:
# 推理模式下,只选择最优专家
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
if self.config.n_shared_experts is not None:
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.config.num_experts_per_tok
# 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
# 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
# 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# 使用 scatter_add_ 进行 sum 操作
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
return expert_cache
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: LMConfig):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
if args.use_moe:
self.feed_forward = MOEFeedForward(args)
else:
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=args.hidden_dim,
multiple_of=args.multiple_of,
dropout=args.dropout,
)
def forward(self, x, pos_cis, kv_cache=False):
h = x + self.attention(self.attention_norm(x), pos_cis, kv_cache)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class VisionProj(nn.Module):
def __init__(self, vision_out_dim=768, lm_dim=512, image_ids=[1, 2, 3, 4]):
super().__init__()
self.vision_out_dim = vision_out_dim
self.lm_dim = lm_dim
self.image_ids = image_ids
self.vision_proj = nn.Sequential(
nn.Linear(self.vision_out_dim, self.lm_dim),
)
def forward(self, image_encoders):
vision_proj = self.vision_proj(image_encoders)
return vision_proj
class Calf(PreTrainedModel):
config_class = LMConfig
last_loss: Optional[torch.Tensor]
def __init__(self, params: LMConfig = None):
super().__init__(params)
if not params:
params = LMConfig()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
# image的特殊占位符,对应每张图切分成M个token,和get_img_process中的数量对应
self.image_ids = params.image_ids
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(self.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.tok_embeddings.weight = self.output.weight
pos_cis = precompute_pos_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
self.register_buffer("pos_cis", pos_cis, persistent=False)
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers))
self.last_loss = None
self.OUT = CausalLMOutputWithPast()
self._no_split_modules = [name for name, _ in self.named_modules()]
self.vision_proj = VisionProj(768, params.dim, self.image_ids)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# VLM
def count_vision_proj(self, tokens, h, image_encoders=None, seqlen=200):
# 查找token中<image>片段的索引,为了替换做准备
def find_indices(tokens, image_ids):
image_ids_tensor = torch.tensor(image_ids).to(tokens.device)
return [
[i, i + len(image_ids) - 1]
for batch_idx in range(tokens.size(0))
for i in range(tokens.size(1) - len(image_ids) + 1)
if torch.equal(tokens[batch_idx, i:i + len(image_ids)], image_ids_tensor)
] or None
image_indices = find_indices(tokens, self.image_ids)
# 如果此时有图像编码
if image_encoders is not None:
vision_proj = self.vision_proj(image_encoders)
if image_indices is not None:
# 创建一个新的张量来存储拼接后的结果
new_h = []
for i in range(h.size(0)):
before = h[i, :image_indices[i][0], :]
after = h[i, image_indices[i][1] + 1:, :]
# 拼接 before, vision_proj, after
new_h_i = torch.cat((before, vision_proj[i], after), dim=0)[:seqlen]
new_h.append(new_h_i)
# 将所有拼接后的结果堆叠起来
new_h = torch.stack(new_h, dim=0)
return new_h
return h
def forward(self, tokens: Optional[torch.Tensor] = None, targets: Optional[torch.Tensor] = None,
kv_cache=False, image_encoders=None, **keyargs):
current_idx = 0
if 'input_ids' in keyargs:
tokens = keyargs['input_ids']
if 'attention_mask' in keyargs:
targets = keyargs['attention_mask']
if 'current_idx' in keyargs:
current_idx = int(keyargs['current_idx'])
_bsz, seqlen = tokens.shape
# language proj token
h = self.tok_embeddings(tokens)
h = self.dropout(h)
# vision proj token
h = self.count_vision_proj(tokens=tokens, h=h, image_encoders=image_encoders, seqlen=seqlen)
pos_cis = self.pos_cis[current_idx:current_idx + seqlen]
for idx, layer in enumerate(self.layers):
h = layer(h, pos_cis, kv_cache)
h = self.norm(h)
if targets is not None:
logits = self.output(h)
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=0,
reduction='none')
else:
logits = self.output(h[:, [-1], :])
self.last_loss = None
self.OUT.__setitem__('logits', logits)
self.OUT.__setitem__('last_loss', self.last_loss)
return self.OUT
@torch.inference_mode()
def generate(self, idx, eos, max_new_tokens, temperature=0.7, top_k=8, stream=True, rp=1., kv_cache=True,
image_encoders=None):
# rp: repetition_penalty
index = idx.shape[1]
init_inference = True
while idx.shape[1] < max_new_tokens - 1:
if init_inference or not kv_cache:
inference_res, init_inference = self(idx, kv_cache=kv_cache, image_encoders=image_encoders), False
else:
inference_res = self(idx[:, -1:], kv_cache=kv_cache, current_idx=idx.shape[1] - 1)
logits = inference_res.logits
logits = logits[:, -1, :]
for token in set(idx.tolist()[0]):
logits[:, token] /= rp
if temperature == 0.0:
_, idx_next = torch.topk(logits, k=1, dim=-1)
else:
logits = logits / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1, generator=None)
if idx_next == eos:
break
idx = torch.cat((idx, idx_next), dim=1)
if stream:
yield idx[:, index:]
if not stream:
yield idx[:, index:]
@torch.inference_mode()
def eval_answer(self, idx):
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
inference_res = self(idx_cond)
logits = inference_res.logits
logits = logits[:, -1, :]
return logits